

IMAGE’s coming of age

Breaking free from restrictions to Database transformations

F. Alfredo Rego

Profesor del Instituto de Informática y Ciencias de Computación
Universidad Francisco Marroquín
Ciudad de Guatemala, Guatemala

The original research report was presented by the founder of Adager Corporation during
the 1978 HP3000 International Conference in Denver. Some of the terminology has
evolved through the decades, but the fundamental ideas are timeless. In 1988, after 10
years in Guatemala, Adager Corporation moved its operations to Sun Valley, Idaho, U.S.A.

www.adager.com

Abstract A computerized database should reflect an organization’s way
of behaving. As real-world circumstances change — forcing the
organization to adopt new ways and abandon old ones — the
database should also adapt itself. This is easier said than done.

Hewlett-Packard provides tools, such as DBUNLOAD and
DBLOAD, which allow a limited set of transformations to
IMAGE/3000 databases. But these tools do not lend themselves
to the easy implementation of the radical transformations that
are sometimes necessary. The restrictions of these tools, we feel,
are analogous to the restrictions imposed on children by loving
parents.

Taking into consideration that children (just like computer
users) eventually come of age and will do their own thing
despite formidable obstacles, we have developed a software sys-
tem called DATABASE.UTILITY to help IMAGE/3000 users out
of their database transformation predicaments.
• IMAGE’s coming of age 1

http://www.adager.com

Buzzword-compliant
editorial notes

(written 21 years
after the article’s

publication in 1978)

We shall use the term “Adager” (coined in 1979) instead of
DATABASE.UTILITY. Adager means The Adapter/Manager for
IMAGE/3000 Databases.

This article reflects the state of the art in 1978. Computers
have changed dramatically since then and, as Hewlett-Packard
evolved IMAGE/3000 into TurboIMAGE and IMAGE/SQL,
Adager changed accordingly. The few “functions” described in
this paper have grown immensely and their names have also
become less cryptic (“PAVEPATH” became “Repack Dataset”
and “CAPDTAIL/CAPMASTR” became “Change Capacity”).

With the Internet, the HP3000 has become a powerful web
server that can support millions of transactions based on
IMAGE databases — on a daily basis and with thousands of
concurrent users who can be anywhere in the world. As a result,
the HP3000 is known as HP’s Enterprise Database Server for
Business-Critical Computing.

Adager Corporation is conducting leading-edge research and
development with direct Java access to IMAGE/SQL databases
(bypassing the overhead of SQL, ODBC and JDBC used by
common database systems such as Oracle). This Adager tech-
nology, called ADBC (a registered trade mark for “Adager’s
DataBase Connectivity”), allows any Java-enabled client to have
direct access to IMAGE/SQL databases via the Internet from
any place in the world (as well as via private intranets).

The performance of IMAGE/SQL databases has benefitted
from improvements in computer hardware, as 16-bit CISC gave
way to 32-bit RISC in the mid 1980s. For the new millennium,
Hewlett-Packard is taking the HP3000 into 64-bit hardware
architectures pioneered by HP in conjunction with Intel.

This article, however, is about the state of the database art in
1978. So, please rewind your calendar for this flashback. The
only difference is that we now have to worry about terabytes
instead of megabytes and about doing, in one thousandth of the
time, what we could do leisurely back in the 1970s.

Motivation for the
development of

Adager

How can I be sure that my database design is perfect? How can I
guarantee that I will never have to change my database to meet
unexpected shifts in my organization’s way of doing things?

If I can not answer these questions to my satisfaction, then
what type of tuning (and fine-tuning) tools do I need to facili-
tate the constant and inevitable evolution of my database?

What worries me about the tools I have currently available
to me? What type of questions linger in my mind as I dream of
better and more effective ways to do what I have to do anyway?
2 IMAGE’s coming of age •

• Why do I have to stop the operation of my live database for a
long time, even when I only want to make minor changes like
password reassignments? Could I minimize “down” time
while I do certain non-radical transformations? (The answer
is “yes” with Adager.)

• Why do I have to DBUNLOAD my whole database to mag-
netic tape before I transform my schema (assuming, of
course, that I do not want to lose the live data I presently
have!)? (The answer is “you don’t have to do so” with Adager.)

• Why do I have to spend (a sometimes even longer) time to
DBLOAD my previous database, even though I merely want
to optimize the storage locations of a primary path’s entries?
Could I simply reshuffle these entries without having to
worry about the consequences of having to manipulate the
whole database as well? (The answer is “yes” with Adager.)

• Why do I have to PURGE my entire database, when all I want
is to change the name of a data item? Could I simply make
changes such as this without having to kill (and then re-issue
life to) my database? (The answer is “yes” with Adager.)

• Why do I have to EDIT and recompile my schema, when I
simply want to change the read/write capabilities of a user
class? (The answer is “you don’t have to do so” with Adager.)

• Why do I have to CREATE, from the newly produced Root-
File, a brand-new database if the old one was just fine except
for the capacity of a dataset? Could I change the capacity of a
dataset without having to go through this onerous process?
(The answer is “yes” with Adager.)

• Why am I at the mercy of subtle schema changes that can
cause very unpleasant surprises, even after my database has
apparently been successfully reloaded? Could I have some
“editor” which would make sure I do not clobber my schema?
Could I know, before I ruin anything, whether my new speci-
fications are illegal? Could I have a dialogue to discuss the
possible consequences of “slight” changes in transformation
requests? (The answer is “yes” with Adager.)

• Why do I have to write special application programs when-
ever I need to transform my database in ways that are not
supported by IMAGE/3000’s transformation utilities? Could I
have a flexible, non-procedural system? Could I do data-type
conversions if the source data item does not match the target
data item? (The answer is “yes” with Adager.)
• IMAGE’s coming of age 3

Description of Adager Adager is a suite of programs designed specifically to allow a
large selection of transformations to IMAGE/3000 databases
without having to mess around with magnetic tapes or schema
recompilations.

Adager invests a good 90% of its time making reasonably
sure that your requested transformations are legal and will not
produce unpleasant results. Strict log-on subsystems verify that
only authorized users access a database.

All of our design trade-offs have one main objective: to pre-
serve database consistency and integrity. At the least sign of
trouble, Adager does its best to back out and to salvage the orig-
inal database.

When necessary, the RootFile is appropriately updated; MPE
files are created or purged as needed; datasets are reorganized to
include or exclude structural information; datasets and data
items are renumbered if any intermediate elements have been
eliminated, etc. You don’t have to worry about the myriad
details involved in even the simplest database transformation,
because Adager automatically takes care of all the overhead.

Global database
transformations

• COPY: Copies the RootFile and all of the datasets of a data-
base.

• RENAME: Assigns a new name to a database and changes
MPE file names as well as internally-kept IMAGE names.

• PASSES: Reports, lists, modifies, assigns, re-assigns, takes
away, etc., maintenance passwords and read/write passwords
and level/class numbers.

Transformations of
detail datasets

• NEWDTAIL: Adds new detail datasets to the database (with
the appropriate new data items for new fields, if needed).

• CAPDTAIL: Modifies the capacity of a detail dataset, preserv-
ing all current chains and making sure, in the case of a
decrease in capacity, that the target capacity is not less than
the lowest permissible capacity for the given dataset’s status.

• KILLDET: Deletes a detail dataset.

Transformations of
master datasets

• NEWMASTR: Adds new automatic or manual master
datasets to the database (with the appropriate new data items
for new fields, if needed).
4 IMAGE’s coming of age •

• CAPMASTR: Modifies the capacity of a master dataset, pre-
serving hashing properties and chainhead structural informa-
tion. Attempts to minimize synonym probabilities by
suggesting prime-number capacities in the neighborhood of
your requested capacity, according to the key’s hashing type.

• KILLMAST: Deletes a master dataset, making sure that it is
safe to do so and that no detail orphan chains will be left
hanging without master chainheads.

Transformations of
data items

• NEWITEM: Adds new items to existing datasets.

• KILLITEM: Deletes a data item from the global item table.

• NEWFIELD: Adds a new field to a dataset (a field is a specific
reference, in a dataset, of a global data item).

• KILLFIELD: Deletes a field from a dataset.

• RDEFITEM: Redefines the type of a data item (from integer
to byte, for instance) and does all the appropriate data con-
versions if necessary.

Transformations of
element references

• NEWNAME: Assigns a new name to a data item or a dataset.
Checks non-duplicity and legality of the requested name.

Transformations of
access paths

• NEWPATH: Defines an optimized access path between a mas-
ter dataset and a detail dataset.

• CLOSPATH: Deletes a path between a master dataset and a
detail dataset.

• SORT: Adds a collating specification for all detail chains in a
given path.

• UNSORT: Removes the collating specification for all detail
chains in a given path.

• PRIMARY: The path most frequently accessed in chained
mode should be specified as the primary path for a detail
dataset. Should this state of affairs change, you can redefine
the primary path for the detail dataset.

• PAVEPATH: Reshuffles the entries of a detail dataset so that
the entries of each chain in a given path will be in contiguous
storage locations for efficiency’s sake in chained retrieval.
• IMAGE’s coming of age 5

Conclusion Adager keeps track of all IMAGE/3000 internal housekeeping,
while your database evolves.

You are now free to concentrate your attention on the only
housekeeping task that really matters: Your database’s accurate
reflection of your organization’s way of doing business.

You can now specify — without fear — whatever you need
in your database today, according to today’s requirements.
Tomorrow, you can easily remodel your database according to
the constantly changing conditions of your business.

Thanks to Adager, The Adapter/Manager for IMAGE/3000
Databases, you have broken free from restrictions to database
transformations.
6 IMAGE’s coming of age •

	IMAGE’s coming of age
	Abstract
	Buzzword-compliant editorial notes (written 21 years after the article’s publication in 1978)
	Motivation for the development of Adager
	Description of Adager
	Global database transformations
	Transformations of detail datasets
	Transformations of master datasets
	Transformations of data items
	Transformations of element references
	Transformations of access paths
	Conclusion

