

Lessons from 23 years of Gypsy
programming
F. Alfredo Rego
Adager Corporation
Sun Valley, Idaho 83353-3000 • USA

www.adager.com

A keynote
message from

hp3000-L

John Clogg, of Coldwater Creek, wrote a message to hp3000-L on
the topic of this HP World 2001 Conference (Chicago, Illinois,
U.S.A.)

I would like to take John’s message as a guiding light for the
three kinds of things that I wish to accomplish during this
presentation:

1. Exchange ideas.
2. Give specific examples of how we can all cooperate with

Hewlett-Packard.
3. Engage as many members of the hp3000 community as possible.

Date: Thu, 24 May 2001 14:32:51 -0700
Reply-To: John Clogg <jclogg@thecreek.com>
Sender: HP-3000 Systems Discussion <hp3000-l@raven.utc.edu>
From: John Clogg <jclogg@thecreek.com>
Subject: Re: [HP3000-L] HPWorld cost
To: HP3000-L@raven.utc.edu

... I haven't read Interex's charter lately, but I'll bet its
stated purpose is not only to stage profitable conferences.
There is probably something in there about "exchange of ideas"
and "advocacy with HP". Those goals are best served by engaging
as many members of the user community as possible.

http://www.adager.com

Always on The theme for HP World 2001 is “Always on” and this presentation
addresses this topic from the perspective of a computer program-
mer who has worked (and continues to work) on all corners of the
globe and on all kinds of transportation vehicles while moving
from one corner to another.

Integrated work
and play

It turns out that (almost) everything I have done during the last 23
years has (almost) always centered around my responsibilities as
Manager of Research and Development at Adager Corporation.
When people ask me about my “rest and relaxation escapes” and
about my “vacations to get away from it all”, I am at a loss because,
for me, there is no difference between “work” and “play”. I love
what I do and I love doing it either alone or in the company of my
family and friends.

“Pervasive
computing” was

not always so

Nowadays, everyone has at least one computer. In the 1970s, that
was not the case and I had to come up with a methodology that
would allow me to develop world-class software while being based
in a cobble-stoned colonial town in Guatemala with miserable tele-
phone service.

Since 1978, I have been a guest programmer at hp3000 shops
throughout the world and, in the process, I have managed to build
quite a bag of tricks which I will be pleased to share with you. I will
use my laptop computer and an LCD projector to present actual
case studies ranging from the primitive 1970s to the thoroughly
modern 2000s.

I have faced many tricky “how in the world do I do X?”
questions and, with the help of many friends, I have been able to
develop practical answers.
2 Lessons from 23 years of Gypsy programming •

Remote-access
technologies

How does one develop and maintain a major software package
using remote-access technologies (ranging from old and slow tele-
phone connections to new and fast Internet connections)?

• Hard-wired RS-232 (in the old days).

• Sneakernet (connecting computers within the same room or
within walking/running distance).

• The Post Office.

• Overnight couriers.

• Modems.

• Ethernet.

• Internet.
• Lessons from 23 years of Gypsy programming 3

Backing up and
restoring

How does one back up (and restore, if necessary) important mate-
rial across several continents?

• Physical magnetic media.

• Electronic media via Internet protocols (email attachments, FTP,
HTTP, etc.)

• Downloads and uploads between hp3000 hosts and my Mac Pow-
erBook.

International
cooperation

How does one cooperate (and seamlessly merge results) with peo-
ple who use different languages (human languages as well as com-
puter languages) and software-development environments?

• Physical papers and magnetic media.

• Electronic media via Internet protocols (email attachments, FTP,
HTTP, etc.)

• Telephone conversations.

• Face-to-face meetings.

• Video conferences.
4 Lessons from 23 years of Gypsy programming •

Solutions for
business

transformation

The subtitle of the conference is “Solutions for business transfor-
mation”. This suits me very nicely, because my whole life has been a
series of transformations and my line of work deals with the trans-
formation of database structures.

It is remarkable that, even though every company and
institution has undergone unbelievable transformations within the
last Internet-oriented decade, the bedrock upon which every
business rests has remained quite stable. What is this foundation?
Given my background, you will not be surprised by my answer: A
solid database management system.

Being solid, of course, does not imply being inflexible. During
my presentation, we will discuss the trade-offs involved in sculpting
a database for access via:

• Mass-oriented batch processes (which require the best possible
throughput).

• On-demand and on-line processes (which require the shortest
possible response time).

• Web-oriented browser access (which require the strictest kinds of
security and privacy considerations).
• Lessons from 23 years of Gypsy programming 5

Pigeonholing There are several conference tracks into which this presentation
could fit. I took the liberty of including some quotations from
Interex’s program as I prepared these notes on the conference’s sub-
themes:

• E-Services/Internet. Gypsy programmers need good computer-
assisted work environments and good communications to con-
nect with home base.

• General Sessions. Gypsy programmers must be generalists and
must adapt to different cultures so that we can then practice our
specialty with minimal friction.

• HP-UX. Gypsy programmers must take advantage of technolo-
gies that originated with Unix and that have percolated to all
TCP/IP-savvy platforms; in addition, you can’t beat the schooling
— and the examples of what to do and what not to do in life —
that you get by “managing, administering, and developing for
environments primarily based on HP-UX”.

• High Availability. Gypsy programmers can’t afford to be down
and must take advantage of “technologies, processes, and support
programs that can be used to increase the availability of our data
and computing environment”.

• Linux. Gypsy programmers run into more and more of these
boxes nowadays — and into more and more Linux enthusiasts on
airplanes and technical conferences, not to mention me-too cor-
porate managers.

• MPE. This is my specialty and MPE business servers are the ones
that I use most often for my work. In fact, I have a few hp3000
computers that I maintain on several continents — and carry
around in hard-shell suitcases. I use my Mac PowerBook as the
hp3000 console (via a serial connection) and as my working ses-
6 Lessons from 23 years of Gypsy programming •

sions (via Ethernet connections). My Gypsy hp3000 computers
have survived airline baggage handlers, trains, buses, taxis, hotel
bell-people, and all kinds of situations that would have crippled
weaker machines. During my presentation, I will show a small
collection of photographs that show my Gypsy setups in various
continents, hotels and vehicles (including airplanes, boats and
trains).

• Management. Gypsy programmers without good business and
technical management skills will have a guaranteed rough time on
the road. By definition, gypsy programmers “in leadership roles
face many management challenges”.

• Mobile and Wireless Computing. Gypsy programmers are, by
definition, highly mobile and must use all kinds of road-warrior
computing tools.

• Storage Management. Gypsy programmers must store — and
retrieve — their material with minimal fuss, using sophisticated
hierarchies of storage modules, whether in their briefcases or on
the other side of the world. Issues of “performance, cost manage-
ment, data security and future directions” are paramount.

• Windows NT and 2000. Nobody, but nobody, can get away from
these beloved — albeit much maligned — things; even my trusty
Mac PowerBook runs Windows 2000 via a software emulator.
• Lessons from 23 years of Gypsy programming 7

Let’s discuss the
“computer

programming”
part before the

“Gypsy” part

Computer programming is based on simple ideas related to funda-
mental concepts that are essential to getting anything done:

• Procedure followers (computers and their processors).

• Procedures (computer programs, including operating systems,
applications, and tools).

• Data structures (memory and its hierarchy, ranging from fast pro-
cessor registers to slow magnetic peripherals, as well as the data
management systems that keep track of the whereabouts of your
information).

• Communications (internal, within the computer and its peripher-
als, as well as external, with networks of all types).

• Other...

The last few Internet-oriented years have seen a tremendous
growth in all of these areas. We will examine examples of each.
8 Lessons from 23 years of Gypsy programming •

MagicEven though the concepts are simple and elegant, computer pro-
gramming seems to be an impenetrable jungle full of primeval fear
and magic.

Most mortals have given up and believe that computer
programmers have the power to create ritual recitations of verbal
charms or spells (“procedures”) to produce magical effects (via the
appropriate “procedure followers”).

Moreover, computer programmers keep their material hidden
away and coded in cryptic languages that make communication
with normal people quite impossible.

In a way, this “magic” feeling is justified. Even after decades of
programming computers of all sorts in all kinds of programming
languages, I am still amazed when a compiler produces object code
that a linker consolidates into applications (or applets or libraries)
that actually run and “charm” the computer into doing something.

Even the most jaded among you will secretly admit that this is a
glorious thing that happens trillions of times a second all over the
world (and in outer space), whether you are dealing with super-
optimized code that runs in an interplanetary probe at the edge of
the solar System or with scripts (the JCL of mainframes or the
AppleScript of Macs) that get interpreted by slower virtual
machines to manage batch-oriented processes.

Surprisingly, once you are a programmer you are always a
programmer and you can program anything. And I mean
“anything” quite seriously.

For example, how many of you think of PowerPoint as a venue
for expressing your programming skills? And, to boot, I mean your
mathematical and scientific programming skills! If we have time, I
would like to share with you (later on) a little PowerPoint
“program” that I showed in a previous talk and that deals with
imaginary numbers and the n different complex nth roots of 1.
• Lessons from 23 years of Gypsy programming 9

Procedure
followers

(computers)

When thinking about “computer programming”, most people think
of common computers (mainframes, minis, PCs, Macs) as the pro-
cedure followers. There are actually all kinds of procedure follow-
ers and they pop up in unexpected places. Here are some examples:

• Personal digital assistants (PDAs).

• Embedded processors (such as the ones inside your car, your cell
phone, your digital camera, etc.)

• Java Virtual Machines.

• Web servers.

• Email servers.

• FTP servers.

• Presentation software (such as PowerPoint).

• Web browsers.

In general, anything that you can program, including your VCR’s
remote control and your car’s cruise control, is a procedure fol-
lower.

During my presentation, we will have an interactive break where
everyone will have the opportunity to identify procedure followers
that may not be obvious.

A Gypsy programmer is probably a leading-edge user of many of
these gadgets.
10 Lessons from 23 years of Gypsy programming •

Procedures
(computer
programs)

When thinking about “computer programs”, most people think of
common applications (payroll, spreadsheets, manufacturing).
There are actually all kinds of procedures and they pop up in unex-
pected places. Here are some examples:

• Perl scripts.

• Stream files.

• Job-control scripts.

• VisualBasic scripts.

• Speed-dial and address-book specifications in your cell phone.

• Source files (which are procedures that compilers follow to pro-
duce object files).

• Executable object files (which are procedures that virtual
machines or real machines follow to orchestrate computer behav-
ior).
• Lessons from 23 years of Gypsy programming 11

Data structures
(memory and its

hierarchy)

From single-bit flags to multi-terabyte databases.

• Digital watches.

• Cell phones.

• Pagers.

• PDAs.

• Laptop computers.

• Desktop computers.

• Servers (from small ones for a few users to large ones for thou-
sands of users).

• High-speed (and very expensive) registers.

• “Main” memory.

• Slower (and less expensive) discs (or disks, if you prefer).

• Other kinds of storage peripherals.
12 Lessons from 23 years of Gypsy programming •

Communications• RS-232 (serial).

• Other.

• TCP/IP.

• Various protocols (HTTP, FTP, etc.)

The programming
cycle

Regardless of the specific procedures and procedure followers
involved, the fundamental part of computer programming is the
generation of an idea that can be specified by means of some pro-
gramming language (and implemented by means of some machine
that will obey instructions in such language).

Some people believe that the writing of the idea (in the lingo of
some programming language) is the first step in programming.

I respectfully disagree. In fact, I spend a lot more time just
staring at the sky than typing on my computer keyboard.

When I find myself staring at the ceiling or at the walls, I know it
is time to go outside (under any and all weather conditions) to get
some fresh air and some fresh ideas.

This is why I love to go to the Alps, for instance. And this is why
I live in Sun Valley, at 6,000 feet (about 2,000 meters) above sea
level. My home town of Antigua Guatemala, after all, sits at 5,000
feet (about 1,5000 meters) above sea level, among 12,000-foot
volcanos.

Naturally, if you live at sea level (or anywhere in between), you
can get your inspiration in ways that suit your style.

Regardless of what you do for kicks, though, you have to come
up with ideas before you sit down to write the program(s) that will
implement your brain children so that the computer(s) in question
will do what you want.

This, of course, is easier said than done. The computer will not
do what you want! Therefore, you have to debug your
implementation.
• Lessons from 23 years of Gypsy programming 13

During my presentation, we will discuss some specific examples
of editing, compiling, linking, testing, releasing, supporting, etc.

“Program” vs.
“Product”

There is a huge difference between a “program” and a “product”
and we will see that it is not easy to go from the former to the latter.

The “Gypsy” part
of programming

Back in November of 1978 (almost 23 years ago, as seen from the
2001 HP World Conference in Chicago (Illinois, U.S.A.), I flew
from Guatemala to Denver (Colorado, U.S.A.) to give a presenta-
tion on the research work that I had been doing with my students
at Universidad Francisco Marroquín.

I met Bob Green of Robelle, who invited me to go to Vancouver
(British Columbia, Canada). You can see the paper I presented in
Denver: www.adager.com/TechnicalPapersHTML/BreakingFree.html

Without having ever planned anything, I began my Gypsy
programming career right then and there.
14 Lessons from 23 years of Gypsy programming •

http://www.adager.com/TechnicalPapersHTML/BreakingFree.html

EditingBob had developed Qedit for his own use as a programmer and had
started a small but growing clientele.

I was immediately convinced that Qedit was much better than
the Editor that came with MPE but there were some problems with
how to run Qedit on the various machines that I was using during
my travels.

Please keep in mind that this was 1978, 23 years ago, and there
were no such beasts as “personal computers”. Only big business had
computers (of any kind) and I, personally, did not have any
computer at all.

So, Bob was kind enough to develop a “Gypsy” version of Qedit
that was licensed to me and not tied to any specific machine. In
addition, it had its own versions of the compilers (within the
Robelle account) so that I would not be forced to change the SYS
account of the people who would be kind enough to allow me to
use their computers.

(Qedit uses its own highly-optimized file format which normal
compilers don’t understand. Therefore, you need to customize the
compilers so that they will process Qedit files.)

Backups as
dual-purpose
mechanisms

My work would live on backup tapes that I would transport
between one machine and the next. It was an amazing feeling (and
it still is) to arrive at a new place, to restore my files, and to keep on
working as if I had always been there, with my environment per-
fectly set up (thanks to the QeditMgr file that controls Qedit’s pref-
erences).

My favorite Qedit configuration is full-screen visual mode. I
have heard that I push the limits of the TCP/IP connection between
my PowerBook and the hp3000 by specifying 93 (yes, ninety three)
rows per screen. I like to have a 21-inch monitor attached to the
video port of my PowerBook so that I get two screens and lots of
real estate.

It’s not unusual for me to have 6 or so screens on the big
monitor and a couple of screens on the built-in monitor (including
one screen which is connected to the hp3000 through the serial
port, as the console).

Later on, I began to use my Mac PowerBook to edit files during
trips. So, I developed macros that download all of my source files
(in plain-text ASCII format, not in Qedit format) from my hp3000
to my PowerBook.
• Lessons from 23 years of Gypsy programming 15

After having edited the files locally (using BBEdit or the
CodeWarrior development environment), I use other scripts that I
developed to upload the modified files to the hp3000, using
Reflection, which automatically creates the files in Qedit format.

During my presentation, I will share some of the methods that I
have developed to move files back and forth among the various
computing platforms that I use (and to guarantee a monotonically
increasing chronological sequence that ensures that I don’t lose
work or revert to obsoleted versions).

I have learned that strict discipline and stringent scheduling are
necessary to maintain this complex operation in synchrony. As a
by-product, I end up with backups in different places (and in
different formats). Redundancy is good, but you have to manage it
carefully.

Doing many of these tasks by hand would be mind-boggling. So,
I rely on scripts that I have created through the years. These scripts
are my electronic assistants and they keep track of everything that
could go wrong and notify me whenever they detect something
untoward.

Single source I like to have a single “source” for all documents, from which I can
produce any kind of output (executable object code, printed docu-
mentation, web publishing, etc.)

The ultimate goal is to reduce the number of magnetic media
and printed documents and to make everything available
electronically.

For instance, I have a lot of material on my PowerBook
(including the whole Encyclopaedia Britannica in HTML and all
manuals for the hp3000 in PDF).

Likewise, I am working hard to make all distribution of my
software via Adager’s web and FTP servers.

I will be pleased to share several portable treasures with you and
to show as many examples of “moving electrons” instead of
“chunks of physical stuff” as time will allow.
16 Lessons from 23 years of Gypsy programming •

A worldwide
Chinese puzzle

One day, when I was quietly minding my own business, I saw an
email message from the Marketing Manager of HP Asia -Pacific:

I would like to know what would be the best way to
accomplish data conversion of all user data in an
IMAGE database. Our problem is that our customers
have data in IMAGE databases in the older CCDC
Chinese character set and would like to convert this to
the newer Big5 Chinese character set (which is sup-
ported by various Windows front ends). They need
some utility/tool that would do this and this is where I
am looking for your suggestions. At present we have
the conversion utility that reads in data from flat files
containing CCDC characters and outputs correspond-
ing flat file of Big5 characters. This could be tailored to
read/write from buffers.

Processing “standard U.S. characters” is easy. Dealing with
“extended” European characters is a bit more difficult. Actually
converting Chinese characters from one representation to another
was, up to then, something that I knew was possible but had never
actually experienced.

It is a profound thing, because there is a big difference between
knowing and doing!

The pieces of the
puzzle

What a great opportunity for everybody, I thought.
Within Adager, I had the necessary parts for solving the puzzle

(rehashing masters whose search fields were affected, rebuilding
their B-Tree indexes in the process, rebuilding sorted paths —
according to the Big5 Chinese collating sequence — whose sort
fields were affected, and so on). But I did not have any idea,
whatsoever, regarding Chinese characters (whether in CCDC or
Big5 representations, much less the method for translating from
one to the other).

Fortunately, HP had some Chinese-conversion software that we
could use for the project. I asked René Woc (of Adager) and Stan
Sieler (of Allegro) whether they would help me to incorporate this
specialized software into Adager’s structure. They accepted the
challenge with as much enthusiasm as I did.
• Lessons from 23 years of Gypsy programming 17

The players René spent many long nights and weekends assisting me on the
complex tasks and communications involved in this challenge. He
remained as “Houston Control” while I was “orbiting” all over the
place due to previous commitments that I had already accepted and
could not postpone.

Stan Sieler was very helpful with the incorporation of the
esoteric translation routines that HP-Taiwan provided. We still have
no clue regarding the inner beauty of the Chinese language, so we
did everything “by the numbers” and we crossed our fingers,
hoping that the mathematics of the whole thing would work out.
This was akin to landing a Boeing 747 in heavy fog, exclusively by
instruments that you must trust 100%.

It turned out that the original Chinese programmers had already
left HP (or had been reassigned) and nobody had any idea
regarding the inner workings of these routines.

As a result, I spent a couple of trans-Atlantic flights working on
them (using my Mac PowerBook with CodeWarrior’s development
environment).

After long discussions, Stan and I “massaged” this code and
convinced it to work under Adager’s hp3000 environment (as
dynamically loaded XL library modules).

Meanwhile, HP’s MPE/iX engineers were working on leveraging
off the work on Chinese Big5 Native-Language Support (NLS) that
their HP-UX colleagues had done.

This work was essential for the rebuilding of all sorted paths
whose sort fields were involved in the conversion, because the
CCDC representation of Chinese characters does not have the same
collating sequence that the Big5 representation uses.

Eventually, all of these results converged from all over the world
and I was able to orchestrate everything on my traveling European
hp3000.

Coincidentally, I did the final work just a couple of blocks away
from Vivaldi’s church in Venezia. I am sorry I didn’t take a picture
of my hp3000 (and my 21-inch flat-screen monitor) arriving via a
Gondola (I was too concerned about making sure that the
equipment would not end up at the bottom of the canal).

But I took these other pictures of that wonderful city so that you
may remember this project against the memories of a Guatemalan
Gypsy in Venezia.
18 Lessons from 23 years of Gypsy programming •

The resultsThis example illustrates a major software project that was done in
Sun Valley, in California, in Europe, on many airplanes, and via lots
of Internet traffic over several continents.

It is very interesting to note that the number of physical
packages that were exchanged among the participants was zero. I
would say, without hesitation, that our effective use of the Internet
was a major factor in our timely success.

I would like to express my public gratitude to Ashish Phillips (of
HP in India), to Linda Mei (of HP in Taiwan), and to Tien-You
Chen (of HP in Cupertino) for their technical and managerial
assistance.

Stan Sieler (of Allegro in California) and René Woc (of Adager
in Guatemala and Sun Valley) were integral parts of the lean-and-
mean Adager team that supported me as I practiced all the Gypsy
theory that I am preaching here.

Our combined work demonstrates that it is possible to deploy a
significant software undertaking across the globe, with one
programmer moving all over the world using the Gypsy
methodologies discussed in this presentation.

Our work also illustrates the value of cooperating with Hewlett-
Packard to increase overall good will with users and independent
software suppliers.

We managed to engage as many members of the hp3000
community as possible, with different specialties and skills, from all
corners of the earth, without going overboard (because it was
imperative to maintain a very small and effective group).

In the end, this is a vital issue with Gypsy programming: You
can only do the things we mentioned if you are an individual or a
small cohesive team. I would not recommend this kind of approach
for a bureaucratic bunch.
• Lessons from 23 years of Gypsy programming 19

So, what is a
Gypsy

programmer?

A Gypsy programmer is not limited to one location, to one com-
puter, to one development environment, to one culture, to one lan-
guage, to one time zone, and so on.

Would I recommend Gypsy programming for everyone?
Obviously not! You must have Gypsy blood as a pre-requisite :-)

Biographical
Sketch

F. Alfredo Rego is the Manager of Research and Development at
Adager Corporation. He began his career as a university professor
(mathematics, physics, computer science) in his native Guatemala.
He has given technical presentations on IMAGE/SQL databases
throughout the world. In 1981, Interex (The International Associa-
tion of Hewlett-Packard Computing Professionals) gave him its
Hall of Fame Award. In 1999, Hewlett-Packard honored him with
The hp3000 Contributors Award (which recognizes outstanding
members of the hp3000 community who are not HP employees).
20 Lessons from 23 years of Gypsy programming •

	Lessons from 23 years of Gypsy programming
	A keynote message from hp3000-L
	Always on
	Integrated work and play
	“Pervasive computing” was not always so
	Remote-access technologies
	Backing up and restoring
	International cooperation
	Solutions for business transformation
	Pigeonholing
	Let’s discuss the “computer programming” part before the “Gypsy” part
	Magic
	Procedure followers (computers)
	Procedures (computer programs)
	Data structures (memory and its hierarchy)
	Communications
	The programming cycle
	“Program” vs. “Product”
	The “Gypsy” part of programming
	Editing
	Backups as dual-purpose mechanisms
	Single source
	A worldwide Chinese puzzle
	The pieces of the puzzle
	The players
	The results
	So, what is a Gypsy programmer?
	Biographical Sketch

