

IMAGE/SQL Database Foundations

F. Alfredo Rego

Adager Corporation
Sun Valley, Idaho 83353-3000 • USA

www.adager.com

Business-critical
online transaction

processing

IMAGE/SQL databases (which are an exclusive competitive
advantage of Hewlett-Packard’s HP e3000 Business Servers) are
built for online transaction processing applications (OLTP).
For convenience, we say “IMAGE” instead of “IMAGE/SQL.”

These specialized high-performance databases are the life-
blood of business-critical processes that must be “up” all the
time, because every second of “down” time is very expensive.

Hewlett-Packard wrote in an advertisement that appeared in
Computerworld and Information Week:

If your company’s survival depends on system availability,
the HP e3000 is the one to rely on. The HP e3000 delivers
99.9% uptime. The Datapro User Survey of midrange sys-
tems ranked the HP e3000 # 1 in reliability.

Award-winning IMAGE gets the job done well, reliably, and
within reasonable economic constraints. This is a rarity in this
era of hype and it is something worthy of celebration.

We are very pleased to work with IMAGE, but we are never
satisfied. Since it is human nature to try to squeeze even more
from the good things that we already have, we would like to
study how we can get as much as possible out of our IMAGE
databases, now and in the future.

Where do we begin?A database (even a very sophisticated database) is just a crude
model of the reality of an organization. We can’t store reality in
a database, just as we can’t keep an actual orchestra in a CD.

At best, we can hope to maintain a half-decent description
or representation which, through the magic of electronics, will
play back a reasonably useful likeness.
• IMAGE/SQL Database Foundations 1

http://www.adager.com

The representation, due to limitations of technology and
economics, will consist of a group of values for a relatively small
collection of “features” (or “peculiarities” or “attributes” or
“characteristics”) that we want “to keep track of” because we
consider them important for the functioning of our specific
enterprise. For example, consider a personnel database and the
typical attributes it maintains for employees: name, data of
birth, salary, and so on.

Whether the attributes that we sustain in our databases are
important or not is a crucial matter, because there is no sense in
carrying around an overwhelming load of useless material.

Learning to say “no” (emphatically but respectfully) may be
our most valuable design skill, after all.

A differential
approach to database

design

The database design (and implementation) process is a jungle
that looks impenetrable. A good first step is to sort things out
into a few significant categories that are relatively easy for us to
determine.

An interesting approach came to me as I was discussing dif-
ferential calculus with my kids. We talked about change (and
about various rates of change as well as about rates of rates of
change, and so on). Everything changes and items that appear
to stay the same do so only because they change very slowly
according to our perception.

With this idea in mind, we took a piece of paper and drew a
change line that had “things that change a lot” at one end and
“things that tend to stay the same” at the other end. We then
had a lot of fun filling in the range in between.

We began with our human cycles of hunger, thirst, and
sleepiness throughout a 24-hour period. We examined every-
body’s growth chart (as recorded on one of our kitchen’s posts).
We looked at family pictures, dating from the times of our
grandparents to the most recent prints, including wedding pic-
tures and baby pictures. We looked at photos of our house as it
went through several remodeling efforts.

We looked at World history. We reviewed geology (as home-
work for a trip to the Galápagos islands). We went over
astronomy and the amazing accomplishments of NASA (after
having watched my TV conversation with Jim Lovell). We dis-
cussed cosmology and theology.

Back to Earth and to the here and now, it turns out that this
differential approach with respect to time can be very useful for
designing databases.
• IMAGE/SQL Database Foundations 2

Segregate things
according to their

rates of change

We use picoseconds (trillionths of a second) to measure events
which we think are super-fast. We use eons (billions of years) to
measure events which we think are super-slow.

Somewhere in the middle of this wide spectrum we find the
phenomena which occupy most of our attention. These are the
events that are the most useful and interesting from a human
perspective.

Most IMAGE databases keep track of resources (and their
interrelationships) whose event-speed ranges from a “fast”
which we can measure in seconds to a “slow” which we can
measure in years. Some IMAGE databases, of course, also use
real (floating-point) numbers in IEEE format to keep track of
information that requires more precision than standard com-
mercial transactions. The choice is yours and IMAGE is happy
to provide the necessary database structures.

Big pie in the sky but
tiny pie on the table

IMAGE gives you many options, but you must choose between
being complex and being complicated.

Lousy designers take approaches that are convoluted, byzan-
tine, perplexing, labyrinthine, fancy, sophisticated, involved,
ornate, embellished, adorned, inconvenient, disadvantageous,
ornery, oppressive, tyrannical, onerous, and taxing, even when
dealing with simple situations. They offer a big pie in the sky
but deliver a tiny pie on the table. Their motto is: If you can
make it complicated, why make it simple?

Good designers can abstract—from a thicket of technical
details and marketing extravaganzas—a couple of essential
elements.

Resources and their
relationships

There are two kinds of fundamental types or categories that are
sufficient to create exceptional and powerful database models,
even for apparently complex circumstances.

The two essential categories for designing databases are:
• Resources (things, individuals, products, possessions, arti-

cles, and so on). A resource has an independent, separate,
or self-contained existence. We shall use entity as a syn-
onym for resource in cases for which the term “resource”
does not feel right (when we refer to people, for instance).

• Interrelationships involving resources (interactions, collab-
orations, involvements, connections, cross references, entan-
glements, embroilments, and so on). For convenience, we
shall use relationships as a synonym for interrelationships,
• IMAGE/SQL Database Foundations 3

even though there are subtle technical differences between
the terms. It is important to note that relationships, in
their own right, have important properties that we must
represent in a well-designed database.

This disarmingly simple—yet rigorous—approach to “dividing
and conquering” gives us an edge over the complexity-oriented
competition.

Kinds of resource and
kinds of relationships

The kinds of resources in an enterprise and the kinds of rela-
tionships among such resources tend to remain reasonably sta-
ble for relatively long periods of time. For example, a company
will always have people who work for it and products that it
makes.

Specific resources and
their specific
relationships

Specific resources and their specific relationships tend to
change more. For instance, regarding people, we may hire new
employees, we may fire some, and we may lose some to the
competition. Regarding products, we may discontinue old ones
and we may create new ones.

The fact that we add (or delete) a specific resource or a spe-
cific relationship does not mean that we have to change the
kinds of resources or relationships that are the vital parts of our
organization.

In IMAGE, we use data entries to represent specific
resources or specific relationships.

DatasetsIn IMAGE, we use datasets to represent stable kinds of
resources and their stable kinds of relationships. A dataset
(master or detail) is a homogeneous collection of data entries.
For instance, the dataset of all employees, or the dataset of all
airplanes, or the dataset of all classrooms.

A dataset represents a category (a group whose members
have a collection of attributes in common). Each individual
member has a key—a unique identifier that distinguishes a
given object from all other objects within a system. The specific
values of the non-key attributes may be different for different
members of a dataset. The specific values of the key attributes
must be different for different members of a dataset.

The only difference between master datasets and detail
datasets is their performance-oriented method of access. Both
masters and details provide the ability to access their data
entries by means of serial—also called sequential—scans and by
• IMAGE/SQL Database Foundations 4

means of directed access to any data entry via its absolute
address (entry number). In addition:

• Master datasets are biased for hashing and B-Tree indexed
access.

• Detail datasets are biased for chained (linked) access along
pre-defined (but optional) performance-enhancing paths.

Datasets for entitiesThere are specific entities (for instance, the employee whose
name is Janice López, or the company called Control Engineer-
ing, or the department called Sales). Each specific entity has its
own specific entity attributes (such as Janice’s employee num-
ber, or her date of birth). We want to keep track of these entity
attributes in our database and we want to be able to access, as
quickly as possible, a given entity and its attributes. IMAGE
master datasets are optimized for this kind of access by means
of hashing and B-Tree indexing.

Datasets for
relationships

There are also specific relationships (for example: the assign-
ment relationship between the entity called Janice López—an
employee—and the entity called Sales—a department within
the company). Each specific relationship has its own specific
relationship attributes (such as the starting date of Janice’s
assignment to the Sales department, which may be different
from the starting date of Janice’s employment at Control Engi-
neering). We want to keep track of these relationship attributes
in our database and we want to be able to access, as quickly as
possible, all of the relationships—and their respective
attributes—for a given entity. IMAGE detail datasets are opti-
mized for this kind of access by means of chaining.

The generality of
relationships

Our goal is to add generality and to reduce complexity. Conse-
quently, we do not want to restrict relationships unnecessarily.
In fact, most relationships should allow a given entity to be
related to zero, one, or more entities—of the same kind or of
different kinds.

 Under special circumstances, we may want to apply restric-
tions—but restrictions should not be the default. Let’s take
marriage as an example. Under strict Catholic rules, a priest or
a nun should be married to zero people. Under “standard” law,
a person can be married to one other person—of the opposite
sex in most jurisdictions, but not necessarily so in others.
Under polygamist rules, a man could be married to several
women.
• IMAGE/SQL Database Foundations 5

The number of entities involved in a relationship is just one
dimension. The kind of entities involved in a relationship is
another dimension. The involved entities may be members of
different classes—for instance, an employee may be related to a
department through an assignment relationship. Or the entities
involved in a relationship may be members of the same class—
for example, an employee may be related to another employee
through a management relationship.

Regardless of your moral—or legal—restrictions regarding
marriage or any other relationship, your DBMS should not
force its restrictions on you.

DatabasesAn IMAGE database is a homogeneous collection of datasets
and their supporting data structures.

AttributesResources and their relationships have characteristics or
attributes (such as name, date, salary, etc.) that define specific
dimensions of “color” or “character” to distinguish their cur-
rent state or status from the state or status of other resources or
relationships.

An attribute’s value quantifies a specific dimension for a spe-
cific entity or for a specific relationship. Each attribute for a
given entity or for a given relationship can have only one spe-
cific value whose choice is limited by the attribute’s domain.

For instance, you may have an attribute called “day of the
week” whose domain is “Monday, Tuesday, ..., Sunday.”

In fact, the term “data validation” implies a verification of
the specific values of attributes, to make sure that they fall
within the attribute’s domain (for instance, we should not have
a database that has a value of “722” for the “day of the week”
attribute—neither should we have a value of “1756” for the
“year of birth” attribute for a current employee).

KeysOne of these attributes (or a combination of a few attributes
that represent essential properties) is a key that unequivocally
identifies a given resource or a given relationship. An example
of a key for people with a given nationality is passport number.

The key is composed of one or more attributes that form a
unique handle. A key denotes an object or a relationship among
objects, while non-key attributes denote the properties of an
object or a relationship.

A key identifies a given entity or a given relationship, setting
it off from other entities or relationships of the same kind.
• IMAGE/SQL Database Foundations 6

As an interesting example of entities with several possible keys,
consider the periodic table of the elements. Each of these
attributes is a valid key in its own right:

• The element’s symbol (for instance, “C”).
• The element’s name (for instance, “Carbon”).
• The element’s atomic number (for instance, “6”).

You could choose one of these candidate keys as the key, even
though the table includes all of these keys for convenience’s sake
under a wide range of situations.

Functional
dependencies

The functional dependencies among well-chosen keys and
attributes will tend to show remarkable stability. For instance,
the functional dependency between a personal identification
number and a given person will probably hold for life.

Individual attributes of a specific resource or a specific rela-
tionship tend to change more than the types of resources and
relationships. For instance, Jane Doe’s position within the com-
pany may change, or her home address may change, or her
salary may change, or her family name may change. But, in spite
of these relatively minor changes, Jane Doe remains as a valu-
able member of the “people” type of entity for the company.
This is an integral part of our differential approach to database
design.

Intelligent attributesWe may certainly think of attributes as just pieces of data, but I
prefer to think of attributes as a combination of data and the
intelligence required to process the data. As an instance, let’s
study our treatment, in Adager, of the name attribute as we
apply it to the names of individuals in our customer database.
We have implemented this technology easily, within the rules of
IMAGE. We keep the information for names thus:

<LastName><Separator&Title><FirstName>

LastName may have only one family name (“Smith,” as in
the U.S. tradition)—or many family names (“Montes Fernán-
dez de García Salas,” as in the Guatemalan tradition).

Separator&Title is one of several codes (for instance, a colon
“:” for “Mr.” or a semicolon “;” for “Mrs.”). Separator&Title
serves a triple function:

• Separator between LastName and FirstName.
• Clue to the person’s “title” or “greeting qualifier.”
• Data compressor, because there is no need for an extra

blank to separate last names from first names.
• IMAGE/SQL Database Foundations 7

My name attribute, for instance, is encoded as “Rego:Francisco
Alfredo” and decoded as “Mr. Francisco Alfredo Rego” (or
decoded as “Mr. Rego” for a greeting). In addition to the infor-
mation, we have encoded the intelligence required to process
this information.

FieldsA field is the smallest meaningful component of information in
an IMAGE database.

A data entry is composed of one or more fields which store
the specific characteristics of an entry’s keys and attributes. For
instance, we may define a data entry for an employee with these
fields: name, birth date, salary. We may also define a data entry
for an airplane with these fields: name, number of engines, price.

Data itemsFor convenience, IMAGE defines fields by means of global enti-
ties called data items.

We define a data item only once, and we then use a given
data item to define fields in as many different datasets as we
desire.

A field is a data item which is referenced in a dataset’s data
entry. The data item name, for instance, is referenced as an
employee name (such as Germaine Soffey) and as an airplane
name (such as Boeing 747).

IMAGE and QUERY standardized a useful syntax in the
early 1970s, with a period between the dataset name and the
field’s data item name. So, we say “the employee.name field” and
“the airplane.name field.”

Performance-
oriented access

strategies

In a high-performance online database system, we need to get
information about given entities and their relationships while
somebody waits over the counter or waits over the telephone.

Too much waiting and that somebody will prefer to go to
our competition. This means that we must find the entry (or
group of entries) in question—among billions of entries—as
efficiently as possible.

The challenge is to get such entries with the minimum of
hassle in the fastest possible way while utilizing the least
amount of disc space and the tiniest amount of effort during
the original (“data capture”) creation of the entries.

Obviously, we have too many conflicting requirements and,
as a consequence, there is no ideal access method that will be
perfect under all circumstances. We must be willing to pay
some price and we must reach some kind of compromise.
• IMAGE/SQL Database Foundations 8

IMAGE provides several kinds of access methods which we
can use according to our needs under various conditions.

We should design (and periodically tune up) our databases
to provide the fastest possible response time for the most
important transactions and queries. We want to minimize the
effort required to answer the most frequently asked questions.

This issue (answering the most frequently asked questions)
is what must guide our design and maintenance choices regard-
ing database access methods.

Serial or sequentialFrom the current entry, get the next (or the previous) available
entry (regardless of the value of its search field). IMAGE does
not care how you got to the current entry and you must be
aware of your whereabouts to avoid trouble.

This method works fine for small datasets (or for month-
end batch processing, which reviews every entry) but it may
take “forever” and be unacceptable for online situations.

DirectedGet the entry (if it exists) at a specific data entry number or
address. Caution:

• Master entries may change their location due to secondary
migrations or repacking.

• Detail entries may change their location do to repacking.

Calculated or hashedGet the master entry (if it exists) whose search field contains a
given value, regardless of its location.

Hashing is a mechanism that converts a value to a number
(within a well-defined number range). Master datasets use
hashing to locate, very quickly, one entry of interest among mil-
lions of entries. (There are two kinds of hashing in IMAGE,
depending on the data type of the search field.)

We provide the value of the search field and IMAGE calcu-
lates the appropriate primary address within the master dataset
where this entry should reside.

It is possible that several master entries (with different
search field values) may result in the same calculated primary
address. IMAGE keeps all such entries linked together in a syn-
onym chain, for performance reasons.

ChainedFrom the current entry, get the next (or the previous) entry
with a congruent search-field value.
• IMAGE/SQL Database Foundations 9

Chaining is a mechanism that links (logical) neighbors even
when they may be (physically) millions of entries away from
each other.

IMAGE does not care how you got to the current entry and
you must be aware of your whereabouts to avoid trouble. Nor-
mally, you call dbfind to specify a detail’s path (and a specific
search-field value within that path) before you call dbget to get
the next (or the previous) entry with a congruent search-field
value. If you forget to call dbfind before calling dbget, IMAGE
will use the primary path as the default current path and the
current entry’s search-field value as the default congruency cri-
terion. If these defaults are not what you were expecting, you
will get an incongruous surprise.

“Congruent search-field value” means different things for
masters and for details:

• In master datasets, all data entries whose search field val-
ues hash to the same primary address are linked together
by means of synonym chains.

• In detail datasets with paths, all data entries whose search
fields have the same value are linked together by means of
path chains.

To implement high-performance chains, IMAGE uses special-
ized list data structures to maintain link pointers (forward and
backward) as well as head and foot pointers (to be able to locate
the beginning and the end of the chain).

These data structures allow IMAGE to navigate through
masses of data and to access, in a hurry, those entries which are
congruent to each other by means of their search field values.
For instance, all 25 checks written by customer number 7702
out of a possible 86,042,600 checks can be found in a fraction of
a second.

The paths through a detail can be sorted. Regardless of the
time of the month when a given customer’s checks were cashed,
we can have a neat chain for each customer which has logically
linked together, by check number, all of the customer’s checks.

Due to entry recycling (IMAGE reuses the locations of old
entries that have been deleted), check number 205 may be in
entry number 2 and check number 10 may be in entry number
1045 (i.e., check number 205 is physically located before check
number 10) but, when we retrieve the checks via a sorted path,
we will get check number 10 before check number 205.

We pay two kinds of prices for these conveniences. There is
extra work when we add the entry to the dataset (chain point-
• IMAGE/SQL Database Foundations 10

ers must be updated) and there is extra space in the entry to
store such pointers.

Paths as optional
performance boosters

For performance reasons, you may use paths to hard-wire some
obvious relationships as “hot” in the database’s structure. But
you do not want to be stuck for life, since some hot relation-
ships may cool off and some sleepers may wake up unexpect-
edly.

Fortunately, IMAGE paths are nothing more than perfor-
mance-boosting options for retrieval time. You may or may not
choose to include paths in your design, at your discretion. You
can always add or delete paths at any time (using Adager, for
instance) during the database’s life, even after having added
millions of entries. You can also sort (and unsort) paths at any
time.

Paths have nothing to do with database structures and they
are a performance option and not a requirement (i.e., you can
design an IMAGE database that consists entirely of stand-alone
datasets).

Pointers: essential &
non-essential

IMAGE’s strategy—in terms of optimizing access—includes the
use of pointers. But there are various types of pointers and,
before expressing unsubstantial opinions regarding IMAGE,
one must understand the specific kind of pointers that IMAGE
uses.

Standard hierarchical and network database management
systems use essential pointers. Essential pointers convey infor-
mation about your information. If you delete the pointers, you
lose information. You need these pointers, desperately, when
you are dealing with a hierarchical DBMS or with a network
DBMS.

IMAGE, on the other hand, is neither a hierarchical nor a
network DBMS. IMAGE uses non-essential pointers which do
not convey information about your information. IMAGE’s
pointers are intended for indexing, to improve the perfor-
mance of accessing given data entries within a database. Non-
essential pointers are redundant and you can always eliminate
them—at any time—without losing any information (the only
loss you suffer is a loss in performance). By the same token, you
can always add non-essential pointers. In fact, Adager was cre-
ated in 1978 because of this fundamental idea.

If you decide to exchange your perception of your entities
(modeled via master data entries, for instance) and your rela-
tionships (modeled via detail data entries, for example), you can
• IMAGE/SQL Database Foundations 11

convert IMAGE master datasets to detail datasets and vice
versa. Whether or not you will ever choose to take advantage of
the tremendous flexibility that IMAGE offers you, it is nice to
know that the flexibility is there.

B-Tree indexing for
masters

IMAGE provides B-Tree indices for master datasets so that you
may quickly access groups of master data entries whose search
field values are within a given range (even when they are phys-
ically scattered all over the dataset).

Third-Party Indexing
(TPI)

In addition to sorted access (to both master and detail entries)
according to the values of any fields, TPI offers other advanced
features (such as keyword retrieval).

Bushwhacking or
highway driving?

IMAGE allows us the freedom to go explorer-like, making our
way through thick woods by cutting away bushes and branches
with sequential and direct access methods.

IMAGE also allows us the convenience of traveling through
“pre-established hubs” by means of techniques such as hash-
ing, paths, B-Tree indexing, and TPI.

We do not have to access anything in a predetermined way,
but it is nice to know that we may choose to do so, if we know
that a given “well-trodden route” will get us more quickly to
our desired destination.

Why wade through swamps if we can use a bridge? Why
swim across the Atlantic if we can take the Concorde?

Critical Item Update
(CIU)

DBUTIL allows you to configure critical-item update (CIU) to
allow (or to forbid) IMAGE’s native dbupdate intrinsic to
update detail sort fields and detail search fields.

This is a wonderful capability in terms of performance,
because we can do (with a single call to dbupdate, which will
modify only the affected chains) what would otherwise require
a call to dbdelete (which would unlink all chains for this data
entry, whether affected or not) followed by a call to dbput
(which would relink all chains for this data entry).

We should be careful and precise regarding terminology. For
instance, the loose usage of technical terms such as search item
or sort item may confuse the issue of items as global database
entities vs. fields as local dataset objects.

A given global data item can be specifically used as a regular
field in dataset A, as a search field in dataset B, as a sort field in
• IMAGE/SQL Database Foundations 12

dataset C, and as a search field for one path and as a sort field for
another path in dataset D.

Critical Field Update (CFU) should have been the appropri-
ate term, but it is too late now. Sigh!

Keys vs. search fieldsA key is simply a field (or a group of fields) which uniquely
identifies an entity or a relationship.

A key does not have to be an IMAGE search field (although a
key may be an IMAGE search field). An IMAGE search field is
defined only for performance’s sake, to be able to take advan-
tage of hashing and B-Tree indexing (for master datasets) and
chaining (for detail datasets).

Generally, a resource’s key is a simple key while a relation-
ship’s key is a concatenated key, made up by the keys of all the
related entities.

A teaserIf the same entities engage in the same kinds of relationships
but in different ways or under different circumstances, each
relationship’s key must include some additional attribute(s) as
discriminants among the various relationships.

What on Earth, you say? Don’t panic. With the help of a cou-
ple of famous movie stars who did some outrageous things a
few decades ago, we may be able to see the light.

As an example of entities we may consider people (such as
Elizabeth Taylor and Richard Burton) and as an example of
relationships we may consider marriages.

Usually, most people think that there is one relationship
between two entities, but the Burton-Taylor example shows that
it is possible to have multiple relationships between two enti-
ties (I forgot how many times they were married to—and
divorced from—each other, not to mention their own mar-
riages to other people).

How can we model these various relationships between Liz
and Richard (ignoring, for now, their own marriages to other
people)? By assigning each marriage a unique key which is an
unequivocal combination of some minimal set of attributes
such as these:

• key for spouse # 1
• key for spouse # 2
• marriage date
• marriage place
• marriage authority (name of judge)
• divorce date
• divorce place
• IMAGE/SQL Database Foundations 13

For most people, “key for spouse # 1” and “key for spouse # 2”
should be sufficient (even for people with multiple marriages,
because most people with several marriages marry different
spouses). For Taylor and Burton, obviously, we need at least
one more attribute to uniquely identify a given marriage, in
addition to the keys for both spouses.

A combination of these three attributes may still not be suffi-
cient, if they used the same place for more than one ceremony:

• key for spouse # 1
• key for spouse # 2
• marriage place

A combination of these three attributes may still not be suffi-
cient, if they used the same judge for more than one ceremony:

• key for spouse # 1
• key for spouse # 2
• marriage authority (name of judge)

A combination of these three attributes might be sufficient,
because it is very unlikely that these two stars managed to get a
complete “marriage-divorce-marriage” cycle in one day:

• key for spouse # 1
• key for spouse # 2
• marriage date

Some modeling strategies are OK for reflecting simple relation-
ships but have tremendous difficulties dealing with situations
such as this that require the ability to model zero, one, or many
relationships among various kinds of resources (or even within
the same kind of entities, such as “people”).

You should take full advantage of IMAGE’s modeling power
for these kinds of subtle challenges, which crop up in the most
unexpected corner cases and boundary conditions in business-
critical situations.

TransactionsResources and their relationships don’t just sit there. They
interact with one another and with their environments by
means of transactions which affect (and are affected by) such
resources and their relationships.

Transactions define the allowed behaviors of data entries,
which must be as efficient and as effective as possible:

• Adding new data entries (via IMAGE’s native dbput intrin-
sic or via SQL’s insert statement).
• IMAGE/SQL Database Foundations 14

• Finding existing data entries (via IMAGE’s native dbfind
and/or dbget intrinsics or via SQL’s select statement) so
that we may relate them, report them, update them, or
delete them.

• Modifying individual attributes of existing data entries (via
IMAGE’s native dbupdate intrinsic or via SQL’s update
statement).

• Deleting existing data entries (via IMAGE’s native dbde-
lete intrinsic or via SQL’s delete statement).

LockingIMAGE database transactions may be launched by a single
online user, or by a single batch process, or by many (possibly
thousands) of concurrent online and batch processes.

To avoid chaos, each individual transaction needs to be
undisturbed by other concurrent transactions. IMAGE offers
several choices of granularity regarding locking strategies to
make sure that we can achieve a fair compromise between high
performance, throughput, exclusivity (for each transaction
thread), and sharing (among various transaction threads).

IMAGE provides native dblock and dbunlock intrinsics, as
well as other methods that allow us to control the flow of con-
current transaction threads, including back-out processing.

Worthwhile choicesA database can be as simple as the organized collection of an
individual’s e-mail messages or as complex as the organized col-
lection of an airline’s complete structure (airplanes, crews, air-
port gates, flight schedules, baggage routing, cargo,
maintenance records, maintenance schedules, reservations,
travel agents, frequent-flier programs, personnel, finance, train-
ing, investor relations, and so on).

It is possible to design a complex and cumbersome database
for an individual’s e-mail messages and it is possible to design
an elegant database for an airline that is simple, economical,
easy to use, and easy to maintain under heavy-duty use in harsh
environments. It all depends on the designer’s ability (or lack
thereof) to abstract the essential qualities of the “reality” that
the database is supposed to model.

There is a big difference between knowing the syntax of some
DDL (data definition language) and being able to design a good
database. There is a big difference between knowing the syntax
of some language (such as English) and being able to write a good
poem. There is a big difference between knowing SQL (or the
high-performance native IMAGE intrinsics) and being able to use
an IMAGE database to our greatest advantage.
• IMAGE/SQL Database Foundations 15

We are confronted with virtually infinite choices regarding
the number and variety of real-life “situations” that we want to
model as well as the database “solutions” that we can create.

The challenge that every designer faces is to choose a small
subset of worthwhile “situations” and an effective database
model (“solution”) that will do the trick as economically and as
efficiently as possible, with the minimum of daily fiddling once
the database is up and running under real-life non-academic
conditions.

Complexity and
normalization

Ideally, things should be simple. Unfortunately, things are com-
plex. But we should avoid unnecessary complexity. This is the
objective of normalization. I have developed a wry working
definition of normalization:

Keep together those things that belong together and sepa-
rate those things that do not belong together.

Deciding which things belong together is, obviously, a matter of
taste. Nevertheless, an expensive taste may bankrupt us and
matters of taste really do matter.

Normalization is the breakdown of seemingly complex oper-
ations into simpler processes. The challenge, at the beginning,
is to place the appropriate elements (no more and no less)
where they belong, at the appropriate level, at the appropriate
place, at the appropriate time. Then, the challenge continues,
since we must be able to reallocate resources quickly and effec-
tively to balance the load, at any time, all the time. Normalizing
is an ongoing, dynamic activity.

Normalization applies at every level in the global computer
hierarchy, even though people generally associate normaliza-
tion with data entries and with datasets (which fields should we
include in this particular data entry and which fields should we
exclude from it, placing them on another dataset?)

A normalized structure is open-ended. We can add more ele-
ments to any layer of abstraction without affecting existing
systems. We can delete elements from any layer without affect-
ing existing systems which do not access such elements.

Efficiency and
normalization

Do we want to favor efficiency in terms of access or do we want
to favor efficiency in terms of maintenance?

In general, the higher the degree of normalization (i.e., the
finer the splitting into chunks), the higher the costs of commu-
nication and coordination. Normalization is neither good nor
• IMAGE/SQL Database Foundations 16

bad. It is simply a method which allows us the freedom to
choose our favorite spot in a range which has highly unnormal-
ized databases at one end and highly normalized databases at
the other.

Usually, efficiency in terms of access implies redundancy.
But redundancy, in itself, is not bad. It is just more difficult to
maintain a bunch of redundant things in perfect synchrony.

A super-normalized database contains a large number of
small entries, with many instances of key fields distributed over
many datasets. Even simple queries may require that we assem-
ble the information from many sources, but we may have a
better chance that each of these sources is correct. It is simpler
to maintain a “specialist” source up to date than it is to main-
tain a complex source which tries to keep track of everything at
the same time.

Normal FormsThe rules for the First Normal Form specify that data entries of
the same type (i.e., belonging to the same dataset) must be
uniquely keyed and must not have repeating groups.

The rules for the Second and Third Normal Forms specify
that every field must be either part of the key or must provide a
single-valued fact about exactly the whole key and nothing else.
In addition, a relationship between data entries in different
(master) datasets is always represented by a linking-detail data
entry that contains, as search fields, the values of the keys of the
involved masters.

We could get carried away and go to ridiculous extremes to
normalize a database to death. We could conceivably slice the
information about an employee into many entries, each con-
taining—in addition to the key—a single attribute such as
name, birth date, salary, and so on.

Common sense should prevent us from committing such
atrocities and this is the motivation for the Fifth Normal Form
(“there is nothing significant left to normalize”).

Components and
compounds

There are two complementary ideas that we can use while
structuring an organization’s database model:

• Disassociation
• Association

Disassociation involves the conceptual separation of a com-
pound into simple and meaningful components.

Association involves the orderly assembly of components
into a meaningful compound.
• IMAGE/SQL Database Foundations 17

Normalizing and
relating

A database is based on two complementary ideas: normalizing
and relating.

Normalizing is analogous to disassociation and involves the
conceptual separation of information into simple and meaning-
ful data items.

Relating is analogous to association and involves the orderly
assembly of data into meaningful information which must be
available as quickly—and as accurately—as possible, at any
time.

A database management system relies on components and
assemblies. A normalized database consists of fundamental, lin-
early independent, atomic components which, through
relational operations, become useful information.

HierarchiesA tree-like structure is, perhaps, the most common ordering
method in the Universe, as corroborated by rivers, nerves,
arteries, veins, organizational charts, pedigrees, and so on.

Such a hierarchy is very useful to view information from one
direction (from the root looking towards the leaves, or from the
leaves looking towards the root, or modest combinations of
both directions without wandering too far in a sideways direc-
tion). But what happens when you want to view your data from
more interesting angles? This usually involves heavy perfor-
mance penalties, because you traverse your information outside
of the common channels.

As an illustration, suppose that your information has to do
with customers and products. You may be interested in seeing
all products bought by a given customer and you may also be
interested in writing to all the customers that bought a given
product. You might also need to review all the customers and
products handled by a given sales person.

A hierarchy of
abstractions

We’ll see some examples that show how convenient it is to use
IMAGE to model these challenging cases. Meanwhile, let’s use
the concept of hierarchy in a slightly different context.

SpecificationAt the highest abstraction level, guiding all other issues, we
must consider the fundamental business logic that drives our
enterprise. This fundamental logic dictates the specifications of
our design, regardless of the implementations that we choose.
• IMAGE/SQL Database Foundations 18

ImplementationAt the lowest abstraction level, we deal with the challenges that
are specific to the implementations of our specifications. We
must be sure that we don’t get bogged down by housekeeping
duties, such as providing privacy and security for concurrent
transactions, allowing for diverse networking response times
and protocols, and so on.

HousekeepingFortunately, in the HP e3000 computing platform, IMAGE (the
database management system) and MPE/iX (the operating sys-
tem) take care of many of these low-level housekeeping chores,
but we must still coordinate their performance.

Divide and conquerIt is important to avoid mixing top-level strategic concerns with
low-level housekeeping chores which, in substandard systems,
can easily vary from implementation to implementation—and
even from version to version within one particular implementa-
tion.

Just ask your less fortunate friends how many times they
have been forced to recompile and/or to relink all of their appli-
cations after having “upgraded” a run-of-the-mill database
management system (or an operating system, or their “iron”).

Daily maintenanceSome of the most vital continuous tasks include setting up
dynamic dataset expansion parameters, repacking datasets,
managing dataset capacities, properly backing up jumbo
datasets and other structures that use a combination of MPE
and Posix files (to avoid orphan files on the backups), etc.

The slavery of the
urgent

We should not fall into short-term oriented traps (such as the
Year-2000 source of difficulty) that offer an apparent benefit
(such as “saving space” by not storing century information) but
then extort a burdensome payment when the day of reckoning
arrives.

Our design choices always boil down to the dictum: Pay me
now or pay me later (usually with a steep interest penalty).

Technical breakThe careful (or careless) selection (or default assignment) of
design criteria may affect, sometimes dramatically, the perfor-
mance of our databases.
• IMAGE/SQL Database Foundations 19

We have a high investment in hardware, software, staff, and
user goodwill. We certainly do not want “minor technical
details” to undermine our efforts.

Let’s take a break from high-level material and let’s get our
hands dirty with an implementation-dependent example that
will give you the internal flavor of IMAGE’s high-performance
hashing technology (and its concomitant price when things get
out of whack).

Search field hashing
(or non-hashing) type

To access a master entry, IMAGE employs two distinct meth-
ods of calculating primary addresses.

The first method applies to master datasets with search fields
of type I, J, K, R, or E (binary-oriented fields). The low order
(right-most) 31 bits of the search field value, or the 16 bits of a
half-word search field value, are used to form a 32-bit value.
This value is then decremented by one, reduced modulo the
dataset capacity and incremented by one to form a primary
address.

This method is a more-or-less direct mapping from the
value of the search field into an entry number within the con-
straints of the dataset’s capacity. By allowing a sufficient
capacity and by assigning search-field values which do not
exceed such capacity, you may, in effect, implement your own
hashing scheme.

It is perfectly legal to have a search field of type K30 with the
first 28 half-words reserved for “alphanumeric data of your own
choosing” and the last 2 half-words reserved for the record
number which your own hashing algorithm came up with.
QUERY, of course, would not like to access such a dataset. But
your program will not have any problem with it, provided you
have the appropriate scaffolding.

This method tends to produce a relatively high incidence of
synonyms, in general, unless you make sure that the distribu-
tion of values does not fold back into itself. An example of a
bad distribution would be a 32-bit search field with values for
events in a given year, with the given year as the most signifi-
cant digits: 19770016, 19820024, 19920030, 19990053, etc.

The second method of primary address calculation applies
to master datasets with search fields of type U, X, Z, or P (char-
acter-oriented fields). In this case, the entire search field value,
regardless of its length, is used to obtain a positive 32-bit value.
This value is reduced modulo the dataset’s capacity and then
incremented by one to form a primary address. The algorithm
which is used to obtain the 32-bit intermediate value attempts
to approximate a uniform distribution of primary addresses in
• IMAGE/SQL Database Foundations 20

the master dataset, regardless of the bias of the master dataset
search field values.

The second method tends to produce a lesser incidence of
synonyms if compared with the first method, for certain value
distributions.

The intent of the two primary address algorithms is to
spread master entries as uniformly as possible throughout the
address space of the dataset. This uniform spread should reduce
the number of synonyms.

Generally (although not always), master datasets with char-
acter-oriented search fields have fewer synonyms with prime
capacities than with capacities which have many factors.

Migrating
secondaries

You may have been puzzled by the apparently irrational behav-
ior of certain master datasets. Try this: read, serially, all the
entries of a master dataset, doing a dbdelete for every entry
you read. You expect to have purged all the entries, but, to your
surprise and chagrin, you may discover that you have a few left
over. The same may happen when you delete only entries that
meet certain criteria. After you finish, you may find that you
have, indeed, some entries left over which should have been
deleted.

The solution to this mystery lies in understanding migrating
secondaries. (Many performance puzzles in masters have to do
with understanding secondaries, migrating or not, because long
synonym chains may leads to serious losses of throughput.)

What are migrating secondaries? In some cases, secondary
entries of master datasets are automatically moved to storage
locations other than the one originally assigned. This most
often occurs when a new master data entry is assigned a pri-
mary address which has been previously occupied by a
secondary entry. By definition, the secondary entry is a syn-
onym to some other primary entry resident at their common
primary address. Thus, the new entry represents the beginning
of a new synonym chain. To accommodate this new chain the
secondary entry is moved to an alternate secondary address and
the new entry is added to the dataset as a new primary entry.
This move and the necessary linkage and chain-head mainte-
nance is done automatically by IMAGE but may take a
significant amount of time in certain cases.

A secondary migration can also occur when the primary
entry (of a synonym chain having one or more secondary
entries) is deleted. Since retrieval of each entry occurs through
a synonym chain, each synonym chain must have a primary
entry residing at the chain’s primary address. To maintain the
• IMAGE/SQL Database Foundations 21

integrity of a synonym chain, IMAGE always moves the first
secondary entry to the primary address of the deleted primary
entry. The former first secondary entry is now the primary
entry for the chain and the record formerly containing the sec-
ondary entry is now empty.

All of these gymnastics happen under the covers. It is good
to be aware of these facts whenever you design and maintain
high-performance IMAGE databases.

VisualizationBack to high-level design topics. Graphics are great for classify-
ing resources and their relationships. I like to use:

• Rectangles to represent types of resources (entities tend to
be somewhat stable and rectangles convey a feeling of
steadiness).

• Ovals with outstretched lines reaching out to touch the
rectangles to represent types of relationships among
resources. The Prolog programming language uses circles
for objects and connecting lines for relationships between
objects. You may consider my ovals with outstretched lines
as “lines that happen to have a lump in the middle” (just
for the convenience of being able to write the name of the
relationship in the lump/oval).

Regardless of the graphics you use to guide your classification,
your entities and your relationships will conveniently fall into
categories which are obvious to you and to people who are
versed in your business.

Since we have all been exposed to standardized samples in
the database literature, I would like to treat you to a refreshing
new taste.
• IMAGE/SQL Database Foundations 22

The “before” lookHere is an example that deals with two kinds of entities—
employees and departments—and with two kinds of relation-
ships between them—assignment and management. In many
books on database management systems, we see this classic
example treated along these lines:

This standard treatment is fine from a performance viewpoint,
because a given data entry—or row—has everything you want
to know about a given employee.

But I believe this approach crams too much into the
Employee table, thereby obscuring the model. Performance is,
most certainly, a worthy goal. Modeling power is another wor-
thy goal. Sometimes, unfortunately, these two praiseworthy
objectives are at odds and we must make thoughtful tradeoffs.

In this example, I want to emphasize that a good DBMS
should allow us to model anything we want, without forcing a
“standard” framework on us. Because most of the database lit-
erature explains the highly-unnormalized approach illustrated
in the previous table, I would like—for balance’s sake—to men-
tion the other end of the normalization spectrum. Any point
along this wide range of normalization choices is perfectly
acceptable, as long as we know why we are selecting it.

Employee# EmployeeName Department Salary Manager

123 Janice López Sales 55 Jane Smith

235 Chris Fox Marketing 90 Sue Plus

813 Max Minim Design 25 Fritz Peters
• IMAGE/SQL Database Foundations 23

The proposed lookWe can normalize this table by separating its attributes into four
distinct tables:

1. A table that deals with the attributes of employee entities.

2. A table that deals with the attributes of department enti-
ties.

3. A table that deals with the attributes of assignment rela-
tionships between employees and departments.

4. A table that deals with the attributes of management rela-
tionships between managers and the departments they
manage.

The lossesWe use four tables instead of just one table. and we may cause
more disc accesses for join operations—thereby lowering the
performance of our database accesses.

The gains1. We have a more flexible model of reality and we do not
need to introduce the concept of nulls at all. Nulls are a
cumbersome idea that some people have proposed to deal
with information that is missing from the database. Some
of the missing information may be applicable and some
may be inapplicable. I have found that, by simply separat-
ing entity attributes from relationship attributes, the con-
cept of nulls becomes unnecessary

2. We allow employees to be assigned to zero, one, or more
departments—with different salaries for each assign-
ment, including multiple assignments to the same depart-
ment.

3. We allow departments to have zero, one, or more manag-
ers.

4. We allow a given employee to be a subordinate in some
department(s) and a manager in some—presumably
other—department(s), and so on.
• IMAGE/SQL Database Foundations 24

The “after” lookHere is a diagram:

The management relationship class is really just a specialized
kind of the assignment relationship class. I diagram it sepa-
rately for convenience.

This is a table for the Employee entity class:

This is a table for the Department entity class:

This is a table for the Assignment relationship class:

Employee# EmployeeName BirthDate BirthPlace

123 Janice López 19450926 USA

235 Chris Fox 19601203 UK

813 Max Minim 19540514 Perú

Department Budget DateOfCharter

Sales 1000 19880213

Mktg 50000 19900203

Design 370 19770212

Employee# Department Salary StartDate

123 Sales 55 19920514

235 Mktg 90 19900405

813 Design 25 19910506

Employee Department

management

assignment
• IMAGE/SQL Database Foundations 25

This is a table for the Management relationship class. Employee#
refers to an employee who happens to manage the given depart-
ment.

Notice that a given employee may manage zero, one, or more
departments—and a given department may have zero, one, or
more managers:

Employee# Department

4528 Sales

4321 R&D

7704 Support
• IMAGE/SQL Database Foundations 26

A task-precedence
example

Critical-path task management is a particularly clean example
that is a delight to model with IMAGE.

In this case, our entities are tasks and the relationships
among tasks are their precedence specifications. Some tasks
must be performed before others or we end up wasting valu-
able resources such as time and money. In construction
projects, for example, plumbing must be done before tiling
(although everyone has seen plumbers—or other specialists, if
trade unions are strong—chipping away at beautiful tiles
because some plumbing tasks were not completed properly
before the tilers came along).

We have only one type of resources (tasks) and only one type of
relationships among these resources (preceding).

There is one master data entry for each individual task (and
all tasks are consolidated in the task master dataset).

You can express relationships in the active voice (task A pre-
cedes task B) and you can also express relationships in the
passive voice (task B is preceded by task A).

There are two linking detail data entries (“precedes” and “is
preceded by”) for each relevant relationship among tasks (with
all such relationships consolidated in the precedes detail
dataset). This conveniently allows for the assignment of:

• Zero, one, or more tasks as predecessors for a given task.
• A given task as a successor for zero, one, or more tasks.

This example, modeled with a minimum of database elements,
allows us to quickly answer either of these questions—online—
with equal ease and performance:

• Which other tasks must I complete before I can begin this
task?

• Which other tasks can I start after I complete this task?

Task

precedes
• IMAGE/SQL Database Foundations 27

A manufacturing
example

Another example, if you are a manufacturer or a distributor,
could proceed along these lines:

In this example, we have three types of resources (manufactur-
ers, products, and distributors) and several types of relationships
among these resources (manufacturing, representing, selling,
assembling).

Interestingly, resources are nouns (manufacturer, product,
distributor) and relationships among resources are verbs (man-
ufacture, represent, sell, assemble).

Regarding resources:
• There is one master data entry for each individual manu-

facturer (and all manufacturers are consolidated in the
manufacturer master dataset).

• There is one master data entry for each individual product
(and all products are consolidated in the product master
dataset).

• There is one master data entry for each individual distribu-
tor (and all distributors are consolidated in the distributor
master dataset).

You can express relationships in the active voice:
• Manufacturer manufactures product.
• Distributor represents manufacturer.
• Distributor sells product.

You can also express relationships in the passive voice:
• Product is manufactured by manufacturer.
• Manufacturer is represented by distributor.
• Product is sold by distributor.

Manufacturer Productmanufactures

Distributor assembly

sells

represents
• IMAGE/SQL Database Foundations 28

There is one linking detail data entry for each relationship
between a manufacturer and a product (and all such relation-
ships are consolidated in the manufactures detail dataset). This
conveniently allows for the assignment of:

• Zero, one, or more products for a given manufacturer.
• Zero, one, or more manufacturers for a given product.

There is one linking detail data entry for each relationship
between a manufacturer and a distributor (and all such rela-
tionships are consolidated in the represents detail dataset). This
conveniently allows for the assignment of:

• Zero, one, or more distributors for a given manufacturer.
• Zero, one, or more manufacturers for a given distributor.

There is one linking detail data entry for each relationship
between a distributor and a product (and all such relationships
are consolidated in the sells detail dataset). This conveniently
allows for the assignment of:

• Zero, one, or more products for a given distributor.
• zero, one, or more distributors for a given product.

There are two linking detail data entries (“contains” and “is
contained by”) for each relevant relationship among products
(and all such relationships are consolidated in the assembly
detail dataset). This conveniently allows for the assignment of:

• Zero, one, or more products as components for a given
product.

• A given product as a component for zero, one, or more
products.

This example of a bill of materials, modeled with a minimum of
database elements, allows us to quickly answer either of these
questions—online—with equal ease and performance:

• Which products do I need to assemble this product?
• Which products can I assemble with this product?

Turning your design
graphics into an
IMAGE schema

Please take these general guidelines with a grain of technologi-
cal salt. For performance reasons, it may be reasonable to use
other types (or combinations) of data structures and indices,
but you can certainly begin, as a first cut, with these thoughts:

• Rectangles (collections of entities) can be represented by
master datasets, which are optimized for hashed access
• IMAGE/SQL Database Foundations 29

(i.e., you can find a given data entry very quickly according
to the value of its search field).

• Ovals (collections of relationships) can be represented by
detail datasets, which are optimized for chained access (i.e.,
you can find a given group of data entries very quickly
according to the value of their search fields).

Obviously “hot” relationships can be made to perform like
champions by means of paths (which use IMAGE’s chaining
shortcuts to find, with high online performance, the entities
and their relationships that we want at any time, regardless of
their physical location).

“So-so” relationships are, by definition, not worthy of paths.
These lukewarm relationships will rarely pop up in daily online
database usage. If they surface every now and again, they will
become the subject of serial scans (which are not so bad if we
do them in batch mode only once a month in the middle of the
night). If we notice an alarming trend in the rate of serial scans,
then we simply add a path to minimize waiting time.

Indexing: The Key to
Performance

Typically, we are interested in accessing a group of entries from
a database (for instance, “all the outstanding orders from cus-
tomer XYZ”).

One approach is to scan the database serially, beginning with
the first entry and ending with the last entry, “running into” the
desired entries along the way. If we have millions of entries,
with only a few that meet our selection criteria, we may not be
able to afford to use this approach for on-line applications.

Another approach is to use indexing methods that allow us
to jump directly into the entry or entries which interest us
without having to wade through millions of irrelevant entries.

If performance is not a problem, we can always keep our
information in simple tabular form. But if performance is an
issue (particularly if you have millions of data entries) you may
want to take advantage of smart database structures, such as
those offered—but not forced upon you—by IMAGE (i.e., you
may want to keep your information in “sophisticated tabular
form”).
• IMAGE/SQL Database Foundations 30

Breaking free from
indexing traps

There are several types of indexing methods, with various
advantages and disadvantages, just as there are many kinds of
database management systems. But let’s not be confused by this
apparent variety. Deep down inside, all databases are nothing
more, or less, than bunches of bits. All indexing schemes are, by
the same token, attempts to shortcut the route that leads us into
certain desired bunches of bits within a database. The only pur-
pose of an indexing system is to serve as a performance booster
and we should be able to add, maintain and delete indices
quickly and conveniently.

As long as we keep these fundamental concepts straight, we
will be able to take advantage of indices when they exist, with-
out having a nervous collapse when they are gone. Let’s take
one paragraph from Hewlett-Packard as an exercise in going
back to basics. A while back, in an issue of HP’s Information
Systems & Manufacturing News, Terrie Murphy wrote in an arti-
cle on ALLBASE:

HPSQL’s simple tabular-data structure, with no predefined
data-access paths, significantly increases database-adminis-
trator (DBA) and programmer productivity. DBAs have
great freedom in structuring the database, since it is not
necessary to predict all future access paths at design [time].
If the data is available in the database, it is immediately
accessible at any future time. In non-relational models, all
access paths need to be known when the database is
designed. This adds significantly to overall program-devel-
opment time. In addition, with no predefined data-access
paths, the data structure can be modified in many ways
without affecting existing programs; thus greatly simplify-
ing application maintenance.

The issue is “predefined access paths”, as viewed from an ALL-
BASE perspective. We can easily rewrite the same paragraph
from an IMAGE viewpoint:

IMAGE’s simple tabular-data structure, with (or without)
predefined data-access paths, significantly increases data-
base-administrator (DBA) and programmer productivity.
DBAs have great freedom in structuring the database, since
it is not necessary to predict all future access paths at design
[time]. If the data is available in the database, it is immedi-
ately accessible at any future time. In IMAGE, all access
paths need not be known when the database is designed.
This saves significant overall program-development time. In
addition, with (or without) predefined data-access paths,
• IMAGE/SQL Database Foundations 31

the data structure can be modified in many ways without
affecting existing programs; thus greatly simplifying appli-
cation maintenance.

Without too much effort, we can also rewrite this paragraph so
that predefined access paths appear as tyrants or as liberators.
It’s all a matter of political “spin” and marketing hype.

IMAGE has undeservedly gotten bad press regarding indexing
and predefined access paths. In fact, IMAGE allows you inde-
pendence from predefined access paths (and from many struc-
tural modifications), provided you follow some sensible
guidelines.

As a prerequisite, you should be aware of several IMAGE
design criteria that people tend to ignore:

1. An IMAGE dataset is a simple tabular data structure. The
widespread belief that IMAGE is a “pointer-based net-
work DBMS” is not true. You can build an IMAGE data-
base that does not have any pointers whatsoever.

2. The IMAGE intrinsics that allow you to add, access and
update entries (dbput, dbget, dbupdate) have an
important parameter: the list of those specific fields that
interest you.

3. The IMAGE dbinfo intrinsic gives you a wealth of infor-
mation at run time.

Access listsThe order of keys and/or attributes in an entity (or in a rela-
tionship) is arbitrary. Therefore, the sequence of fields in an
IMAGE data entry is also arbitrary.

To allow for stability within this flexibility, IMAGE provides
the list construct to map any subsets and permutations of
key(s) and/or attribute(s) to/from a program’s buffers. This
permits us to add, delete, or reshuffle fields without the need to
recompile all the programs which access the affected dataset(s).
We must recompile only those programs which explicitly access
any fields that we have added or deleted.

This gives us a high degree of data independence, if we use
late-binding techniques at run time (as opposed to hard-wiring
everything into our programs at compilation time).
• IMAGE/SQL Database Foundations 32

Late bindingKnowing these (and other) IMAGE design criteria is necessary
but not sufficient. As another prerequisite, you should use high
programming standards (this, naturally, applies to any kind of
computer work that you do). A very important programming
standard is that you should postpone binding as much as possi-
ble. This means that you should not burden your programs, at
compilation time, with hard-wired stuff. You should wait until
run time to adjust to the prevailing conditions of the day.

In the case of predefined access paths, if any, you should not
even think about including (or excluding) them in the strategy
of your programs. You should find out, at run time, whether a
given field in a given dataset is an IMAGE search field or not
(using dbinfo). If you are not dealing with a search field, you
might have to do a serial scan of the whole dataset (using
dbget mode 2 or 3) to find those entries, if any, whose field val-
ues you want. (You are certainly free to develop non-IMAGE
indexing schemes to avoid such serial scans.) If you are dealing
with an IMAGE search field, you can be much more efficient.
For a master dataset, use hashing (dbget mode 7). For a detail
dataset, use an IMAGE-provided combination of hashing and
chaining (an initial dbfind followed by dbget mode 5 or 6).

If you follow these reasonable guidelines, your applications
will be totally immune to changes in access paths. You will be
able to add or delete paths at will, to suit the performance needs
of your users. And, as a fun bonus, since the only difference
between masters and details is access method, you will also be
able to change masters to details or details to masters without
impacting any of your application programs.

What do you think now about Terrie’s assertion that “In
non-relational models, all access paths need to be known when
the database is designed”? I am sure Terrie meant to qualify this
statement by adding, “if your programming standards are so
low that you hard-code everything.”

This hard-coding issue applies equally well to SQL, of
course. If you hard-code in SQL, nothing will save you from
getting into deep trouble. Let’s illustrate this observation.

Avoid the
“everything” default

In the case of adding, accessing or updating IMAGE entries,
you should not even think of using “@” to specify the list of
fields that interest you.

The “@” list asks IMAGE to deal with all the current fields in
the dataset (for which your security class is authorized). If you
add, delete or shuffle the fields of a dataset (or if you change
your dbopen security class), you must edit and recompile all
the programs that access that dataset.
• IMAGE/SQL Database Foundations 33

If you add new fields, you risk dangerous buffer overruns
(bounds violations) which may or may not be detected auto-
matically at run time.

Absolutely the same is true in SQL if you use “*” instead of a
specific list of columns.

Since this prospect does not attract me, I follow a strict meth-
odology with IMAGE field lists. Even though it may take a little
more effort up front, I always build a list with the names of
those specific fields that the program needs to access (I prefer to
look at names—rather than numbers—in my source code).

The first time I invoke an access intrinsic (dbput, dbget or
dbupdate) on a given dataset, I pass it this list. Afterwards,
when I invoke an access intrinsic (on the same dataset) that
depends on the same list, I pass it IMAGE’s asterisk list (“*”),
which tells IMAGE “don't bother to assemble and check my
list—simply reuse the previous list.”

(The asterisk “*” means different things to different people
and it is important to remember that SQL interprets the aster-
isk to mean “give me everything.”)

For more than two decades now, I have been able to add,
delete and shuffle fields in my IMAGE datasets. Even though
this fact, in itself, is significant, it is even more impressive
because I have not been forced to edit or recompile those pro-
grams that don’t use such fields.

What do you think now about Terrie’s opinion that “[with
SQL] the data structure can be modified in many ways without
affecting existing programs”? Of course, Terrie meant to qual-
ify this opinion by adding, “provided you don’t use the SQL
asterisk (‘*’) instead of a specific list of columns in your SQL
statements.”

Performance and
maintenance benefits

of explicit lists

There is more to access lists than just flexibility. There is perfor-
mance!

When you request the transfer of a data entry, IMAGE needs
a list of the fields that you wish to transfer. This list is imple-
mented as an array containing an ordered collection of data
item identifiers, either names or numbers. (Any search/sort
fields defined for the entry must be included in the list.) IMAGE
will transfer from/to your own program's buffers only those
fields specified in the list, in the order specified in the list,
regardless of the number of fields in the data entry and regard-
less of the positions of these fields in the data entry.
• IMAGE/SQL Database Foundations 34

Since IMAGE must enforce security regulations, it must
make sure that you are authorized to access the fields you spec-
ify in your list. IMAGE must also make sure that your list
contains valid field designators for the dataset in question.

All these checks take time. As a matter of fact, the IMAGE
manual states that list processing is a relatively high overhead
operation. Therefore, you should pass to IMAGE an explicit list
only once, at the very beginning of your repetitive accesses to
the same dataset. Thereafter, you should pass an asterisk as a
request to IMAGE that it should use the previous list (which it
has saved as the “current list” in its internal tables).

In general, names for fields are easier for program mainte-
nance purposes. Data item numbers are more efficient and
compact, but tend to be more obscure and dangerous, since
data item numbers will change if you delete unreferenced data
items from the middle of the item table (or if you add new data
items in the middle of the item table).

There is a problem if your data entry has many fields and the
names of these fields all have 16 characters. Limitations on
buffer size for character-type variables may not allow you to
hold such a gigantic name-oriented list. In this case, an integer
array to hold a numeric list is better. But you can still do every-
thing in a name-oriented way!

An elegant solution is to call dbinfo with item names in
order to find out their corresponding item numbers, which you
then use in your numeric list. This gives you the best of both
worlds.

Structural freedomBy binding as late as possible, we gain two kinds of freedom: the
freedom from predefined access paths and the freedom from
rigid data structures.

We are able to add, maintain and delete indices quickly and
conveniently. We can use the indices that are “bound” with the
official DBMS (such as hashing & chaining and B-Trees in
IMAGE) and we can use our own (or third-party) indices to
complement the official indices.

Indices are only one aspect of the general database struc-
ture. We are also able to add, maintain, reshuffle, and delete any
other database objects, such as datasets, data items, fields,
paths, sort features, security classes, and so on, with minimal
impact (if any) to our current applications.
• IMAGE/SQL Database Foundations 35

High performance,
high availability,

economy

We want to design, maintain, and orchestrate databases which
perform well under heavy-duty use. There are all kinds of data-
base management systems, in all price ranges and with differ-
ent requirements. Some have ravenous appetites regarding
hardware resources and human attention while others, such as
Hewlett-Packard’s IMAGE/SQL, are lean and mean.

Scott Hirsh once said that using the HP e3000 computer and
its IMAGE database management system was spectacularly
uneventful. This is obviously boring, but would you rather get
some unwelcome excitement into your business-critical com-
puting environment? Reserve such treats for your competition!

IMAGE provides proven solutions to key issues for the elite
business-critical market:

1. High availability (reliability, robustness, resilience, few
demands on your time and attention). If you are tired of
spending your life fiddling with fragile and temperamen-
tal systems, IMAGE is for you.

2. High performance (heavy-duty transaction throughput,
very short on-line response time per transaction). If your
users are tired of spending their lives waiting for “the sys-
tem” to respond (or to come up after a crash), IMAGE is
for you.

3. High concurrence (support for hundreds or thousands of
simultaneous clients via Macintoshes, Unix workstations,
PCs under Windows or DOS, as well as simple terminals,
either locally or remotely, through direct serial connec-
tions or through your company’s Ethernet or Intranet, as
well as via the worldwide Internet.). If your current sys-
tem breaks down after it exceeds a light workload, the
IMAGE workhorse is for you.

InteroperabilityThere are two camps in the standards battlefield. Some people
want to standardize components while other people, more real-
istically, want to standardize interfaces.

Sometimes, “the most popular” component—according to a
given set of someone else’s criteria—is not necessarily the most
appropriate for your circumstances. In this case, you should
wisely choose an elite element (such as IMAGE) for specialized
needs (such as business-critical computing).

The key is interoperability: there should be different com-
puting platforms, operating systems, and database management
systems, each suited for a particular purpose, and they should
all be able to exchange information easily, reliably and
economically.
• IMAGE/SQL Database Foundations 36

In a truly open environment, the question is one of appro-
priateness, since you want the freedom to use the best available
tool for each specialized purpose. It would be foolish to say that
IMAGE is better than non-IMAGE for all cases, and it is foolish
to say that non-IMAGE is always better than IMAGE. You
should be able to choose an open mix of IMAGE and non-
IMAGE according to your needs (and resources). And all of
your applications should be able to intercommunicate.

IMAGE allows this flexibility, because you can write custom
programs in a variety of computer languages and you can use
middleware that takes advantage of SQL, HTML, Java, ODBC,
JDBC, ADBC, and so on.

The fact that you choose IMAGE for high-performance and
high-availability elite applications does not preclude you from
also using other widespread computer platforms and database
management systems in your enterprise’s bag of tricks.

You can use IMAGE as a database server in a worldwide
Internet client/server environment, even if the environment is
severely limited to using only SQL as its common database lan-
guage. Naturally, if you want to enjoy the legendary speed of
IMAGE, you can always communicate with it via its native
high-performance intrinsics. It is your choice. You can enjoy
the best of both worlds.

Multitasking and
multiprocessing

MPE/iX, the operating system for the HP e3000 computer, has
been a multitasking platform from day one, with multi built
into its name from the very beginning (the “M” in MPE), not
tacked on as an afterthought. MPE is multi-user as well as
being a multitude of other useful things.

PosixMPE/iX is Posix compliant (with the “iX” qualifier, we have a
Multi Programming Executive with integrated Posix).

Posix is an operating-system interface definition with deep
roots into the Unix operating system and into the C program-
ming language.

Here is a bit of good-natured technological trivia. There is a
lot of hype behind Unix, but it contains ancient commands
such as “isatty” (you may be forgiven for not remembering that
“tty” stands for the ten-characters-per-second teletypewriter of
the 1960s, the pre-legacy days of computing, when Unix began
as an operating system for one user—hence uni—as a contrast
to Multics, a multiuser operating system). For a Multics chro-
nology, visit:

http://www.lilli.com/chrono.html
• IMAGE/SQL Database Foundations 37

http://www.lilli.com/chrono.html

Internet protocolsMPE/iX supports all standard Internet protocols, including
HTTP for web serving directly from your IMAGE databases.

JavaThe HP e3000 has a Java platform that enables convenient (and
protected) access to your valuable IMAGE databases from any
device that uses Java (such as your Mac, your PC, your Unix
workstation, your cellular phone, your pager, and so on).

Beware of hypeLet’s examine just one example that comes to my mind in Sun
Valley, a few minutes before hopping into my car to drive to the
airport for a flight to California to visit Hewlett-Packard.

Since the 1980s (before it became fashionable), I have lived
in a farm surrounded by national forest at six thousand feet up
in the mountains. The farm’s converted barn is home to all
kinds of computer equipment, including Adager’s Internet
setup. As a healthy contrast, I can see elk and deer while I write
this essay.

Every now and then I drive twenty minutes to the airport
without encountering any traffic worth mentioning. Then, I
land in California’s San Francisco Bay Area and feel trans-
ported to a different world, so vividly described by James Burke
in his book Connections:

The prime examples of man’s love-hate relationship with
technology: the motor car, which makes mobility possible,
and the traffic jam, which makes it impossible.

Unlimited mobility, as promised by car salespeople, is the hype.
A traffic jam (conveniently ignored by car salespeople in their
spiels) drives home the reality of life-after-hype.

Beware of hype: What some people call instant credit is
really instant debt.

You want to liberate yourself, not to become a slave to the
trend of the day.

Are you going to go for hype or for suitability? The choice is
yours at any time, including the opportunities that you have
right here and right now. Choose carefully.
• IMAGE/SQL Database Foundations 38

The bottom lineIMAGE is remarkably economical to own and operate in terms
of hardware resources and human attention. It works reliably
and frugally and does not require an army of expensive prima
donnas to keep it up and running. There are many sites that
support—with a couple of normal individuals—many concur-
rent users linked to a single HP e3000 IMAGE database server.

But IMAGE, by itself, is not sufficient. It is just a tool and
you, as s human being, must still use it wisely.

You can reap the benefits of IMAGE only if you do a good
job designing your databases and maintaining them in a healthy
state. Common sense will be your best ally (provided, of course,
that you know how to read the appropriate technical manuals).

Having something is totally different from being able to use that
something when the need arises.

Analogously, knowing what to do is not the same as doing
what you know. And, even if you know what to do and do what
you know, perhaps that is not what you should do.

After all, there is such a thing as appropriateness. A British
story drives this point home:

The young executive leaving at 6 PM found the president of
the company standing, looking puzzled, with a piece of
paper in front of the shredder.

“This document is very important, and my secretary has
left,” said the president. “Can you make this bloody thing
work?”

“Certainly, sir,” said the young executive, who turned on the
machine, inserted the paper, and pressed the start button.

“Excellent, excellent,” said the president as his paper disap-
peared inside the shredder. “You can go home now, as I just
had to make one photocopy as a backup.”
• IMAGE/SQL Database Foundations 39

	Business-critical online transaction processing
	Where do we begin?
	A differential approach to database design
	Segregate things according to their rates of change
	Big pie in the sky but tiny pie on the table
	Resources and their relationships
	Kinds of resource and kinds of relationships
	Specific resources and their specific relationships
	Datasets
	Datasets for entities
	Datasets for relationships

	The generality of relationships
	Databases
	Attributes
	Keys
	Functional dependencies
	Intelligent attributes
	Fields
	Data items
	Performance- oriented access strategies
	Serial or sequential
	Directed
	Calculated or hashed
	Chained
	Paths as optional performance boosters
	Pointers: essential & non-essential
	B-Tree indexing for masters
	Third-Party Indexing (TPI)
	Bushwhacking or highway driving?
	Critical Item Update (CIU)
	Keys vs. search fields
	A teaser
	Transactions
	Locking
	Worthwhile choices
	Complexity and normalization
	Efficiency and normalization
	Normal Forms
	Components and compounds
	Normalizing and relating
	Hierarchies
	A hierarchy of abstractions
	Specification
	Implementation
	Housekeeping
	Divide and conquer
	Daily maintenance
	The slavery of the urgent
	Technical break
	Search field hashing (or non-hashing) type
	Migrating secondaries
	Visualization
	The “before” look
	The proposed look
	The losses
	The gains
	The “after” look
	A task-precedence example
	A manufacturing example
	Turning your design graphics into an IMAGE schema
	Indexing: The Key to Performance
	Breaking free from indexing traps
	Access lists
	Late binding
	Avoid the “everything” default
	Performance and maintenance benefits of explicit lists
	Structural freedom
	High performance, high availability, economy
	Interoperability
	Multitasking and multiprocessing
	Posix
	Internet protocols
	Java
	Beware of hype
	The bottom line

