

Integer Keys: The Final Chapter

Fred White

Senior Research Scientist

Adager Corporation
Sun Valley, Idaho 83353-3000 U.S.A.
Tel. (208) 726-9100 Fax (208) 726-8191
fred@adager.com http://www.adager.com

 IntroductionThe calculation of primary addresses for IMAGE keys of data types
X, U, P and Z is performed by a hashing algorithm whose goal is to
generate a uniform distribution of primary addresses on the closed
interval [1,C] where C is the capacity of the master dataset.

Despite what you may have read or heard from various IMAGE
evangelists, this is not true for keys of data types I, J, K and R. Keys
of these types are called “non-hashing” keys for the simple reason
that they are not hashed! IMAGE makes no attempt to distribute
them uniformly! The user has absolute control over their primary
address assignment! This control is exercised by the user's method
of assigning key values and his choice of master dataset capacity.

There are two kinds of non-hashing keys: “type R” and “types I,
J and K”. I shall refer to key types I, J and K as “integer keys”.

With the proper tools and knowledge, integer-keyed master
datasets can be created so that they have no synonyms and are not
wasteful of disc space. The ill-advised use of integer keys typically
leads to performance disasters!

 History In January of 1972, the IMAGE/3000 project team agreed to pro-
vide for non-hashed master datasets in which the primary address
calculation would be in the hands of the user rather than con-
trolled by IMAGE's hashing algorithm.

 After considering various options, we decided on the following:

1. IMAGE keys of types I, J, K and R would not be hashed.

2. These keys could be of any length acceptable to IMAGE.

3. Only the rightmost 31 bits (the “determinant”) would be
used to calculate the primary address. (For one-word
keys, their 16 bits are padded on the left with zeroes.)
• Integer Keys: The Final Chapter 1

4. The determinant is then divided by the dataset capacity
yielding a remainder which becomes the primary address
unless it is zero, in which case the capacity is assigned as
the primary address.

Notice that, for a given capacity C, if we use determinant values
N between 1 and C, the primary address for each N is N.

Furthermore, if these determinant values are all unique, the user
will have taken advantage of IMAGE's integer key facility to provide
himself with the good old, traditional, Direct Access Method
(DAM).

However, IMAGE does not demand uniqueness of determinants
nor does it restrict their values to the range 1 to C. We shall see that
this “loosening up” of the constraints on the values of N, if used,
will typically lead to a horrible performance problem unless the
user is armed with a tool for intelligently selecting a capacity which
will enable him to avoid such a performance pitfall.

 Non-hashing Key
Performance

Pitfalls

 In this section I address two distinct examples of bad uses of
IMAGE's integer key facility. Both of these appeared in an earlier
paper of mine “The Use and Abuse of Integer Keys”.

The first example demonstrates that our choice to not hash keys
of IMAGE type R was a horrible design decision.

 Example 1: The
Synonym Pitfall

This “pitfall” arises whenever a user elects to use a key of IMAGE
type R4 whose key values are, for the most part, integers.

To understand why, one must be knowledgeable about the
format of 64-bit reals as represented on the HP3000 family of
computers.

The leftmost bit is the sign bit, the next 9 bits are the exponent,
and the rightmost 54 bits constitute the mantissa (excluding the
most significant bit).

As a consequence, the floating point format of all integers of
magnitude less than 8388609 (2**23+1) is such that the low order
31 bits are all zeroes. All entries with keys like this will be in a single
synonym chain having the dataset capacity as its primary address!

To add a new entry to this chain, DBPUT must traverse the
entire synonym chain to ensure that the key value of the new entry
is not a duplicate before adding it to the chain. This has an impact
on performance proportional to the number of entries in the chain
(which could be in the thousands) and inversely proportional to
the blocking factor.

Also, each DBFIND (or mode 7 DBGET) will, on average, be
forced to traverse half of the chain to locate the desired entry!
2 Integer Keys: The Final Chapter •

The picture improves somewhat if an R2 field is used. In this
case, the rightmost 31 bits (which are reduced modulo the
capacity) include the exponent bits and all bits of the mantissa.

Consequently, the various key values will not all be assigned the
same primary address. However, if these values have only a few
significant binary digits in their mantissa, the rightmost bits will
tend to be all zeroes which will lead to a high percentage of
synonyms regardless of the capacity. This is especially true if the
capacity is a power of 2 because we are treating the R2 field as a
double integer and, if several key values have zeroes in their
rightmost N bits, they are all divisible by 2**N and thus will all be
synonyms.

For either R2 or R4 keys there will always be significant
synonym problems unless the rightmost 31 bits of the keys, in and
of themselves, form a set of doubleword values which represent a
uniform distribution over the closed interval [1,2**31-1]. In this
event, the primary addresses assigned will tend to be uniformly
distributed over the master dataset even though no hashing occurs.

The bottom line is: if your R2 or R4 values don't fit this pattern,
avoid using them as keys.

When Hewlett-Packard finally introduces an IEEE real data type
in IMAGE, similar warnings will apply since the data formats differ
from the Classic 3000 reals only in the number of bits in the
exponents. The 32-bit IEEE real has an 8-bit exponent, the 64-bit
IEEE real has an 11-bit exponent and the 128-bit IEEE real has a
15-bit exponent.

The next example demonstrates the problems which can arise
when using integer keys (IMAGE types I, J or K).

Example 2: The
Primary Clustering

Pitfall

One Friday in 1978 I received a phone call from an insurance firm
in the San Francisco Bay Area. I was told that their claims applica-
tion was having serious performance problems and that, in an
attempt to improve the situation, they had, on the previous Friday,
performed a DBUNLOAD, changed some capacities and then
started a DBLOAD which did not conclude until the early hours of
Tuesday morning!

They were a US$100 million-plus company which couldn't
stand the on-line response they were getting and couldn't afford
losing another Monday in another vain attempt to resolve their
problems.

Investigation revealed that claims information was stored in two
detail datasets with paths to a shared automatic master. The search
field for these three datasets was a double integer key (IMAGE type
I2) whose values were all of the form YYXXXXX (shown in
decimal) where YY was the two-digit representation of the year
• Integer Keys: The Final Chapter 3

(beginning with 71) and where, during each year, XXXXX took on
the values 00001, 00002, etc. up to 30000.

Although the application was built on IMAGE in late 1976,
earlier claims information (from 1971 through 1976) was included
to be available for current access. I do not recall the exact capacity
of the master dataset but, for purposes of displaying the nature of
the problem (especially the fact that it didn't surface until 1978) I
will assume a capacity of 350000.

Although the number of claims per year varied, the illustration
will also assume that each year had 30000.

The first claim of 1971 was claim number 7100001 to which
(using a capacity of 350000) IMAGE would assign a primary
address of 100001. This is because 7100001 is congruent to 100001
modulo 350000.

The 30000 claims of 1971 were thus assigned the successive
record numbers 70001 through 100000 (a cluster of primaries).

Similar calculations show that the claims for each year were
stored in clusters of successive addresses as follows:

 Note that no two records had the same assigned address and
thus that there were no synonyms and that all DBPUTs, DBFINDs
and keyed DBGETs were very fast indeed!

Along came 1978!!!
Unfortunately 7800001 is congruent to 100001 modulo 350000

so that the first DBPUT for 1978 creates the very first synonym of
the dataset. Claim 7800001 is, in fact, a synonym of claim 7100001.

DBPUT attempts to place this synonym in the block occupied
by claim 7100001 but that block is full so DBPUT performs a serial
search of the succeeding blocks to find an unused location. In this
case, it searches the next 60000 records before it finds an unused
address at location 130001! Even with a blocking factor of 50, this
requires 1200 additional disc reads making each DBPUT
approximately 200 times as slow as those of all previous years!

Note that the next claim of 1978 (claim 7800002) is congruent
to 100002 and is thus a synonym of claim 7100002. This also leads
to a serial search which ends at location 130002! Thus the DBPUT

Claim numbers Record Numbers
7100001 through 7130000 100001 through 130000

7200001 through 7230000 200001 through 230000

7300001 through 7330000 300001 through 330000

 7400001 through 7430000 50001 through 80000

7500001 through 7530000 150001 through 180000

7600001 through 7630000 250001 through 280000

7700001 through 7730000 1 through 30000
4 Integer Keys: The Final Chapter •

of each claim for 1978 results in a search of 60000 records 59999 of
which were inspected during the preceding DBPUT!

Primary clustering had claimed another victim! The designer of
this system had unknowingly laid a trap which would snap at a
mathematically predictable time, in this case 1978. After struggling
with this problem for months, the user escaped the clustering
pitfall by converting to “hashed keys” (in both the database and the
software); a very expensive conversion!

Note that the problem was NOT a “synonym” problem in the
sense that synonym chains were long nor was it a “fullness”
problem since the master dataset was less than 69% full when
disaster struck.

The problem was due to the fact that the records were severely
clustered when the very first synonym occurred and DBPUTs serial
space searching algorithm is efficient only in the absence of severe
clustering.

It should be apparent by now that designers may avoid this
cluster collision pitfall by carefully (mathematically) investigating
the consequences of their assignment of integer key values together
with their choice of master dataset capacity.

 Look Mom,
No Synonyms

 As we have seen, the use of integer keys of IMAGE types I, J or K,
coupled with the assignment of key values created by concatenat-
ing pairs (or even triplets) of integer subfields whose values are
sequential, always leads to these clusters of primaries; a new cluster
arising whenever a new value is assigned to any but the last sub-
field.

There are, however, many situations which lend themselves to
the use of integer keys in this manner. In our example, the YY
major values form the sequence 71, 72, 73,... and the XXXXX
minor values form the sequence 00001, 00002, 00003,...

Notice that, for any particular value of YY, the primary addresses
for keys with values YY00001, YY00002,... form a set of (circularly)
consecutive record numbers X, X+1,... where X is the primary
address generated by reducing YY00001 modulo the capacity C. In
other words, they form a cluster of consecutive primaries. I will
refer to such a cluster as a “run”.

Notice that each increment of the minor value by 1 merely
lengthens the run by 1 and that each increment of the major value
marks the beginning of a new run with the minor value restarting
at 1.

This works great (i.e., no synonyms) until a new run collides
with a pre-existing run. When this happens, you have a
performance disaster on your hands as shown in our example.
• Integer Keys: The Final Chapter 5

The question arises: “Is there a way to determine a capacity such
that for a specified range of major, intermediate and minor values,
the resulting dataset will have no run collisions (i.e., no synonyms)
and yet not be unsatisfactorily wasteful of disc space?”.

Some IMAGE evangelists have simplistically “answered” this
question by recommending that you select a capacity equal to or
greater than the largest key value. We shall refer to this technique as
“Method 1".

Applying Method 1 to our 1978 example above would have
yielded a capacity of at least 7830000 to hold 240000 entries (8
years worth). Unfortunately, the dataset would only be about 3.0%
full which, because of its size, would be very wasteful of disc space.

A better “answer”, which we shall refer to as “Method 2", is to
choose a capacity 1 greater than the difference between the highest
and lowest key values. In our example, this would equal 7830000-
7100001+1 = 730000 and the dataset would be about 32.8% full.
Not nearly as bad and yet not great either.

The question then arises: “Is there a way to calculate the smallest
capacity which will yield no synonyms?”.

To any mathematician worth his salt, the answer to this question
is, “Hell, yes”.

To prove this, note that we have already established that the set
of all capacities which will yield datasets without synonyms is not
empty. There is, in fact, an infinite number of answers satisfying
Method 1.

Next, since capacities are always positive, the set of all successful
capacities must have a smallest value since the set of positive
integers is “well ordered” and bounded below by zero.

Lastly, since the method of key value assignment is well defined,
as is the method of primary address calculation, all that remains to
be done is to convert this knowledge to a programmable algorithm
which will calculate this smallest capacity.

Clearly, we could simply start with the minimum possible
capacity C which equals the product N x L, where N is the “number
of runs” and L is the “run length”. By calculating the first address of
each run, we can determine whether any two runs collide. If they
do, we can increment C and try again. This will ultimately yield a
successful value of C which is, for multiple runs, generally far better
than the capacity determined by Method 2.

Some months ago, after years of procrastination and wearying of
the simplistic and inadequate advice being peddled by others, I
finally developed and programmed an algorithm which converges
on a minimum C value in a matter of seconds.

We refer to this algorithm as “Method 3".
If I had possessed Method 3 in 1978, I could have applied it to

our earlier example of a “pitfall” to achieve a no-synonym dataset
6 Integer Keys: The Final Chapter •

90% full by decreasing the capacity from 350000 to 265000 yielding
the following runs:

 If the user wanted to maintain 15 years of claims, Method 3
yields a 79% full dataset with a capacity of 565000 and no
synonyms:

 By now it should be clear that, under the right circumstances
and with the proper tools, integer keys are superior to hashing keys
since we can guarantee a dataset with no synonyms.

Let's look at some other examples.
First, suppose we have an application where access is keyed on

“day-of-year”. We can define a master dataset with an I1 key and a
capacity of 366 (remember leap year). If we subsequently reference
all 366 days of the year, the master will be 100% full with no

Claim numbers Record Numbers
7100001 through 7130000 210002 through 240001

7200001 through 7230000 45002 through 75001

7300001 through 7330000 145002 through 175001

 7400001 through 7430000 245002 through 10001

7500001 through 7530000 80002 through 110001

7600001 through 7630000 180002 through 210001

7700001 through 7730000 15002 through 45001

7800001 through 7830000 115002 through 145001

Claim numbers Record Numbers
7100001 through 7130000 320002 through 350001

7200001 through 7230000 420002 through 450001

7300001 through 7330000 520002 through 550001

7400001 through 7430000 55002 through 85001

7500001 through 7530000 155002 through 185001

7600001 through 7630000 255002 through 285001

7700001 through 7730000 355002 through 385001

7800001 through 7830000 455002 through 485001

7900001 through 7930000 555002 through 20001

8000001 through 8030000 90002 through 120001

8100001 through 8130000 190002 through 220001

8200001 through 8230000 290002 through 320001

8300001 through 8330000 390002 through 420001

8400001 through 8430000 490002 through 520001

8500001 through 8530000 25002 through 55001
• Integer Keys: The Final Chapter 7

synonyms. In this simple case, all three methods yield the same
result.

Suppose, however, we want to key on “day-of-month”. In this
case our I1 (or J1 or K1) key values (in decimal notation) could be
in the form MMDD where 1<=MM<=12 and 1<=DD<=31. The
smallest value represented will be 101 and the largest 1231.

Method 1 yields a capacity of 1231. Since the dataset has exactly
366 entries, it is thus only 29.73% full.

Applying Method 2, we achieve a capacity of 1231-101+1 = 1131
and a master which is 32.36% full.

Applying Method 3 yields a capacity of 431 and a master which
is 84.91% full with no synonyms:

 Let's go one step further. Suppose again that you wish to key on
“day-of-year” but also to distinguish by year and want to span 10
years. Here we can have a key of type I2 represented by a decimal
format of YYDDD (or YYYYDDD).

Choosing the YYDDD format with YY values between 87 and
96, leaves us with a minimum value of 87001 and a maximum of
96366.

Method 1 leads to a capacity of 96366 and a dataset 3.79% full.
Method 2 yields a capacity of 96366-87001+1 = 9366 and a

dataset 39.07% full.
Method 3 yields a capacity of 5366 and a dataset which is 68.2%

full with no synonyms. Not great, but much better than 39.07%
and fantastically better than 3.79%:

Key Values Record Numbers
0101 through 0131 101 through 131

0201 through 0231 201 through 231

0301 through 0331 301 through 331

0401 through 0431 401 through 431

0501 through 0531 70 through 100

0601 through 0631 170 through 200

0701 through 0731 270 through 300

0801 through 0831 370 through 400

0901 through 0931 39 through 69

1001 through 1031 139 through 169

1101 through 1131 239 through 269

1201 through 1231 339 through 369
8 Integer Keys: The Final Chapter •

 Now, in anticipation of the next century, let's use a YYYYDDD
format for a 20-year span starting with 1986 and ending with 2005,
inclusive.

Method 1 results in a capacity of 2005366 and a dataset 0.36%
full. Wow!

Method 2 yields a capacity of 2005366-1986001+1 = 20000 and
a dataset 36.6% full.

Method 3 yields a capacity of 10366 and a dataset 70.61% full
with no synonyms:

Key Values Record Numbers
87001 through 87366 1145 through 1510

88001 through 88366 2145 through 2510

89001 through 89366 3145 through 3510

90001 through 90366 4145 through 4510

91001 through 91366 5145 through 144

92001 through 92366 779 through 1144

93001 through 93366 1779 through 2144

94001 through 94366 2779 through 3144

95001 through 95366 3779 through 4144

96001 through 96366 4779 through 5144

Key Values Record Numbers
1986001 through 1986366 6095 through 6460

1987001 through 1987366 7095 through 7460

1988001 through 1988366 8095 through 8460

1989001 through 1989366 9095 through 9460

1990001 through 1990366 10095 through 94

1991001 through 1991366 729 through 1094

1992001 through 1992366 729 through 2094

1993001 through 1993366 2729 through 3094

1994001 through 1994366 3729 through 4094

1995001 through 1995366 4729 through 5094

1996001 through 1996366 5729 through 6094

1997001 through 1997366 6729 through 7094

1998001 through 1998366 7729 through 8094

1999001 through 1999366 8729 through 9094

2000001 through 2000366 9729 through 10094

2001001 through 2001366 363 through 728

2002001 through 2002366 1363 through 1728
• Integer Keys: The Final Chapter 9

 Now let's look at a few keys which involve three subfields such
as date fields of the forms YYMMDD and YYYYMMDD.

Suppose we want to span the five years 1989 through 1993 and,
for simplicity, ignore the fact that not all months have 31 days.
Each of the five “years” will have 12*31 = 372 days and the number
of entries will be 5*372 = 1860.

Note that “fullness” percentages based on such 372-day years
will always be about 1.6% high since 6 or 7 of the days of these
“years” do not exist and hence don't require data entries.

Method 1 requires a capacity of 931231 for a dataset 0.19% full.
Method 2 requires a capacity of 931231-890101+1 = 41131 for a

dataset 4.52% full.
Method 3 yields a capacity of 2241 for a dataset 82.99% full with

no synonyms.
The charts showing the Record Numbers for the runs of

examples involving three subfields take up too much space to
include in this paper. If you should want them, please contact me.

If we span ten years from 1989 to 1998, inclusive, Method 3
yields a capacity of 5221 for a dataset 71.25% full with no
synonyms. I will no longer bore you with the results of Methods 1
and 2.

Proceeding to the YYYYMMDD format we find that, to span
fifteen years from 1989 to 2003, a capacity of 6246 yields a dataset
which is 89.33% full with no synonyms. To include twenty years,
say from 1989 to 2008, a capacity of 8746 yields a dataset 85.06%
full with no synonyms.

2003001 through 2003366 2363 through 2728

2004001 through 2004366 3363 through 3728

2005001 through 2005366 4363 through 4728

Key Values Record Numbers
10 Integer Keys: The Final Chapter •

Before leaving this section, I would like to show one final chart
based on an integer key of the form YYXXXXX where the values of
YY span the 15 years 1971 to 1985 and the XXXXX values go from
1 to 25000. Method 3 yields a capacity of 375000 and a dataset
100% full with no synonyms:

SummaryThere are several gurus writing papers or giving talks or publishing
books about IMAGE internals, features and idiosyncrasies. Some of
these gurus stick to the facts. Others cloud the issue by peddling
information which, however plausible and amusing, is either false,
imprecise or overly simplistic. I call such gurus “IMAGE evange-
lists”.

Having been the project leader of the IMAGE development team
and co-developer of the primary address calculation algorithm for
both hashing and non-hashing keys, I am amused when I hear or
read the bad trash being peddled by such evangelists.

Some of the statements and recommendations emanating from
these evangelists which this paper has shown to be false, imprecise
or simplistic are:

1. “If you use integer keys, choose a capacity at least as
large as the maximum key value.”

Simplistic. This advice leads to Method 1. Also imprecise since
the author meant to refer to the maximum “determinant”.

2. “If you use integer keys, IMAGE hashes them to deter-
mine the primary address.”

Key Values Record Numbers
7100001 through 7125000 350002 through 1

7200001 through 7225000 75002 through 100001

7300001 through 7325000 175002 through 200001

7400001 through 7425000 275002 through 300001

7500001 through 7525000 2 through 25001

7600001 through 7625000 100002 through 125001

7700001 through 7725000 200002 through 225001

7800001 through 7825000 300002 through 325001

7900001 through 7925000 25002 through 50001

8000001 through 8025000 125002 through 150001

8100001 through 8125000 225002 through 250001

8200001 through 8225000 325002 through 350001

8300001 through 8325000 50002 through 75001

8400001 through 8425000 150002 through 175001

8500001 through 8525000 250002 through 275001
• Integer Keys: The Final Chapter 11

False. Keys of types I, J, K and R are NOT hashed.

3. “Clustering is bad.”

False. When used properly, clustering is the virtue of integer
keys.

4. “If you use integer keys, always choose a prime number
for the capacity.”

False. None of our three capacity selection methods care about
the “primeness” of numbers.

5. “If you use keys of type R4, IMAGE uses the leftmost 32
bits to calculate primary addresses.”

False. IMAGE uses the rightmost 31 bits.

6. “If DBPUT has to search for a free spot in which to add a
new entry (or to move an existing secondary), it inspects
the next higher block and then the next lower and then
the second higher and then the second lower and contin-
ues this ping-pong style of searching until it succeeds.”

False. This statement is pure Science Fiction; truly bad trash. See
also either of my previous papers “The Three Bears of IMAGE” or
“The Use and Abuse of Non-hashing Keys in IMAGE”. I wrote
DBPUT's space-searching routine, so I know it doesn't “ping-
pong”.

7. “Don't let master datasets become more than 80 to 85%
full.”

Imprecise. This is true only if there is a synonym problem. You
may also get good performance up to 95% full if you have a large
blocking factor such as 20 or 30. Integer keyed masters can be great
even if 100% full.
12 Integer Keys: The Final Chapter •

	Introduction
	History
	Non-hashing Key Performance Pitfalls
	Look Mom, No Synonyms
	Summary

