

The Three Bears of IMAGE

Fred White
Senior Research Scientist

Adager Corporation
Sun Valley, Idaho 83353-3000 U.S.A.
Tel. (208) 726-9100 Fax (208) 726-8191
fred@adager.com http://www.adager.com

Introduction Software designers, whatever the product, hopefully provide a
variety of features which they believe are important to user
acceptance of the product.

In many cases, the implementation of a feature is optimized
for the use envisioned by the implementers. Conversely, the
implementation may be sub-optimized for use other than as
intended.

Traditionally, product manuals seldom (if ever) include
motivational discussions of product features so that users are
not warned about sub-optimal uses of the product features.

In some cases the sub-optimal use of features may have no
noticeable effect on throughput or response time. In others the
effect may be disastrous.

Two features of IMAGE/3000 whose sub-optimal use can be
disastrous are “integer keys” and “sorted paths”. For the
purposes of this paper, these two represent, respectively, PAPA
BEAR and MAMA BEAR. Each is a very deep pitfall and
extricating yourself from either can be very expensive.

BABY BEAR is represented by “paths”, another feature whose
misuse, while normally not disastrous, may have a negative
effect on response time and/or throughput. A discussion of the
use of paths is included to justify the title and because it should
be of general interest.

Background “Detail” datasets were intended as repositories for records hav-
ing generally no unique identifying characteristic (field value)
and for which the primary access method would be sequential.

Each detail dataset starts as an empty file of a size large
enough to meet its capacity requirements. IMAGE keeps track
• The Three Bears of IMAGE 1

of the highest record number (initially zero) assigned to any
record of the dataset as a result of a DBPUT. This serves as a
“high-water-mark” and is analogous to the file system's EOF
(end-of-file).

Stated another way, a detail dataset is similar to an ordinary
MPE file in that each new record is assigned an address
calculated by adding 1 to the high-water-mark. When this is
done to an MPE file, MPE adds 1 to the current EOF pointer
and appends the new record.

IMAGE, however, provides for the automatic re-use of space
which results whenever a record is deleted. It keeps track of the
re-usable space by means of a push-down stack. It maintains a
pointer to the newest member of this stack and each member
points to an older member deeper in the stack. DBPUT always
(for detail datasets) assigns the address of the newest member
of this “delete chain” to the new record being “put” unless the
“delete chain” is empty, in which case DBPUT increments the
high-water-mark and assigns the new value of the high-water-
mark as the address of the new record.

“Master” datasets were intended as repositories for records
having a unique identifying characteristic (field value) and for
which the primary retrieval technique would be dependent on
this unique value. The IMAGE manual refers to this as
calculated access.

After much discussion it was decided that two distinct
“flavors” of calculated access be provided: one over which the
user would have (essentially) no control and which would
calculate record addresses via a hashing algorithm whose
objective was to achieve a nearly uniform distribution of
addresses in the face of random or non-random key values, and
another over which the user would have (essentially) absolute
control in that the low-order 31 bits of the key value would
determine the desired address (modulo the capacity).

For those of you familiar with “direct access” methods, this
latter capability can be viewed as a generalized “direct access”
method. Generalized in the sense that addresses greater than
the capacity are not considered invalid but, instead, are reduced
modulo the capacity. IMAGE does this by (a) subtracting 1
from the 31 bit key value, (b) dividing the result by the capacity
to obtain the positive remainder and (c) adding 1 to this
remainder.

It was further decided that this “direct access” technique
would be used whenever the search field was defined as an item
of type I, J, K or R (all of which are of binary format) while
“hashing” would be used whenever the search field was defined
as an item of type U, X, Z or P (none of which are of binary
format).
2 The Three Bears of IMAGE •

For all of the “direct access” type keys, IMAGE treats the
low-order (right-most) 31 bits as a positive integer in
calculating the record address. For this reason, these keys have
been dubbed “integer” keys as a way to distinguish them from
“hashed” keys.

Space allocation for master datasets is completely different
from that described for detail datasets.

In effect, a master dataset starts out with the high-water-
mark equal to the capacity and DBPUT never appends records.
Instead, the record space starts out as entirely re-usable. No
“delete chain” is maintained for master datasets. Instead,
IMAGE relies on a “bit map” which is maintained at the front
of each block of each dataset. For master datasets, DBPUT
calculates the primary address (as described above) and, after
verifying that the key value is unique, attempts to place the new
record at the primary address.

This attempt will succeed if and only if this new record has
no synonyms. Otherwise, DBPUT assigns a secondary address
physically near (hopefully) the primary address. It finds such a
hole by means of a sequential (and cyclical) search starting with
the block containing the current end of its synonym chain. In a
master dataset which is not too full and where existing records
are not “clustered” (i.e. nearly uniformly distributed) and
where the “blocking factor” is not very small, this search might
require zero, or only a few, disc reads.

This technique assigns synonyms to the same block or to
neighboring blocks thus minimizing I/O during DBPUTs,
DBFINDs and keyed DBGETS.

Having covered the pertinent differences between detail and
master datasets, let us proceed to a discussion of the path
feature.

Under IMAGE, a path is a relationship between a master
dataset and a detail dataset. The relationship is 1-to-N (where
N varies from zero to 64535) in the sense that each master
record is related to N records of the detail dataset and that each
record of the detail dataset is related by this path to exactly one
record of the master dataset.

The N detail records related to a common master record are
referred to as a chain since IMAGE links them together with
backward and forward pointers. One end is referred to as the
“beginning-of-chain” and the other is referred to as the “end-
of-chain”. New records are added to the “end-of-chain”. IMAGE
maintains a chain length count and pointers to the beginning-
and end-of-chain in this common master record.

The common master serves as a locator record (via a
DBFIND) to the corresponding detail chain. This is analogous
• The Three Bears of IMAGE 3

to using the card catalog in a library to locate all books written
by a particular author.

The fact that a detail dataset can have paths to more than
one master dataset is analogous to the books in a library being
referenced by other card catalogs such as Title or Topic.

This, together with the fact that IMAGE permits master
datasets to have paths to more than one detail and have more
than one path to any detail make IMAGE (along with the
AUTOMATIC master feature) a very flexible 2-level network
structure data base management system.

Papa Bear: the
INTEGER KEY

pitfalls

My first live encounter with a misuse of integer keys arose in
1978.

One Friday in 1978 I received a phone call from an insurance
firm in the San Francisco Bay Area. I was told that their claims
application was having serious performance problems and that,
in an attempt to improve the situation, they had, on the
previous Friday, performed a DBUNLOAD, changed some
capacities and then started a DBLOAD which did not conclude
until the early hours of Tuesday morning!

They were a $100,000,000-plus company which couldn't
stand the on-line response they were getting and couldn't afford
losing another Monday in another vain attempt to resolve their
problems.

Investigation revealed that claims information was stored in
two detail datasets with paths to a shared automatic master. The
search fields for these three datasets was a double integer key
whose values were all of the form YYNNNNN (shown in
decimal) where YY was the two-digit representation of the year
(beginning with 71) and where each year NNNNN took on the
values 00001, 00002, etc. up to 30,000.

Although the application was built on IMAGE in late 1976,
the earlier claims information (from 1971 thru 1976) was
loaded to be available for current access. I do not recall the
exact capacity of the master dataset but, for purposes of
displaying the nature of the problem (especially the fact that it
didn't surface until 1978) I will assume a capacity of 350,000.

Although the number of claims per year varied the
illustration will also assume that each year had 30,000.

The first claim of 1971 was claim number 7100001 which,
using a capacity of 350,000, IMAGE would assign a primary
address of 100,001. This is because 7,100,001 is congruent to
100,001 modulo 350,000. The 30,000 claims of 1971 were thus
assigned the successive addresses 100,001 through 130,000.
4 The Three Bears of IMAGE •

Similar calculations show that the claims for each year were
stored in groups of successive addresses as follows:

Note that no two records had the same assigned address and
thus that there were no synonyms and that all DBPUTs,
DBFINDs and keyed DBGETs were very fast indeed!

Now comes 1978!!!
Unfortunately 7,800,001 is congruent to 100,001 so that the

first DBPUT for 1978 creates the first synonym of the master
dataset. It is, in fact, a synonym of claim 7100001. Recalling
that DBPUT finds an alternate location by means of a serial
search, DBPUT then searches the next 60,000 records before it
finds an unused address at location 130,001! Even with a
blocking factor of 50, this would require 1200 additional disc
reads which would make each DBPUT up to 200 times as slow
as those of previous years!

Note that the next claim of 1978 (with claim number
7800002) is congruent to 100,002 so is a synonym of 7100002
and also leads to a serial search which ends at location 130,002!
Thus each successive DBPUT results in a search of 60,000
records 59,999 of which it had inspected during the preceding
DBPUT!

PAPA BEAR had claimed another victim! The designer of
this system had unknowingly laid a trap which would snap at a
mathematically predictable time, in this case 1978. After
struggling with this problem for months, the user ultimately
escaped from PAPA BEAR by converting to “hashed keys” (in
both the database and the application modules); a very
expensive conversion!

Note that the problem was not a synonym problem in the
sense that synonym chains were long nor was it a “fullness”
problem since the master dataset was less than 69% full when
PAPA BEAR struck.

The problem was due to the fact that the records were
maximally clustered whereas DBPUT's space searching

Year Claim numbers Assigned addresses
1971 7100001-7130000 100,001-130,000

1972 7200001-7230000 200,001-230,000

1973 7300001-7330000 300,001-330,000

1974 7400001-7430000 50,001- 80,000

1975 7500001-7530000 150,001-180,000

1976 7600001-7630000 250,001-280,000

1977 7700001-7730000 1- 30,000
• The Three Bears of IMAGE 5

technique for masters is optimum only under (nearly) uniform
distribution assumptions.

Note that the performance of DBFIND and DBGET was
excellent since the maximum synonym chain length was 2.

Another much shallower pitfall would have been designed if,
in the above example, the claim numbers had been of the form
NNNNNYY with the same capacity of 350,000. In this case, the
performance of DBPUTs, DBFINDs and keyed DBGETs would
all degrade over time but would never reach the disastrous level
of the DBPUTs of the example. In this case, the degradation
would arise due to the length of synonym chains and due to
local clustering.

Note that this modest pitfall could be eliminated by
changing the capacity, for example, to 350,010.

Note however that this problem would still arise if the
capacity were merely changed, for example, to 350,001.

It should be apparent by now that designers may avoid the
clutches of PAPA BEAR by carefully (mathematically)
inspecting the consequences of the values of their choice of
integer keys in relationship to their choice of master dataset
capacity.

 Mama Bear: the
SORTED PATH

pitfall

 My first live encounter with a misuse of sorted paths arose in
1975.

The facts surrounding this incident were told to me by
Jonathan Bale who was still on the IMAGE project. Neither one
of us remembers the exact numeric details so I have used poetic
license by making up numbers which seem to be reasonably
close to the actual ones involved in the incident.

The user had created a database containing one automatic
master dataset and one detail dataset related by a 2-character
key and where the resulting path was sorted by some long-
forgotten field(s).

The user had written a program which read a record from an
input file, added two blank characters to serve as the search
field and then performed a DBPUT to the detail dataset. This
was repeated for all records of the input file.

At the time that Jon received a phone call, the tape had not
moved for around 10 hours and the program had already been
running(?) for at least 30 hours.

On inquiry, Jon learned that the input file contained over
40,000 80-character records and that the user was using IMAGE
to sort these records!

 This is an extreme example of a sub-optimal use of sorted
paths. To see this, it is important to know that when adding a
6 The Three Bears of IMAGE •

new record to a sorted path, DBPUT starts its search for the
appropriate point of insertion at the end of the chain and then
searches the chain backward until it encounters a record whose
sort field(s) value is not greater than that of the record being
added.

For input records whose sort field values are randomly
ordered, the expected number of records to be searched is one-
half of the length of the chain. When the chain is 20 records
long the search will cover 10 records on the average. When it
becomes 30,000 long, the search will cover 15,000 records on
average!

For a file with 40,000 records to be sorted into one chain the
expected number of reads to cover all searches is approximately
400 million with the last record alone expected to take 20,000!

The blocking factor of the input tape was 200. No wonder
the tape hadn't moved for 10 hours!

To avoid the clutches of MAMA BEAR, avoid using sorted
paths if the chains are very dynamic or very long. The more
dynamic they are the shorter they should be and the longer they
are the less dynamic they should be. The term dynamic is used
here to refer to the relative frequency with which entries are
added and deleted.

Contrary to the many warnings you may read against using
sorted paths, there are occasions when their use is infinitely
better than any other option.

HP's Corporate Parts Center in Mountain View used a
sorted path in its back-order dataset. The search field was the
part-number and the sort-field was a priority assigned by
order-entry personnel in such a manner that the highest
priority back-orders were at the front of the chain.

When new parts were received, a clerk at the receiving dock
would enter the part-number and quantity at a terminal. The
program would then perform a DBFIND with that part-
number on the back-order dataset followed by a sequence of
chained reads. For each record in the chain, a packing slip
would be printed showing the quantity and destination and the
record was then deleted. This process was repeated until the
chain was empty or all received parts were accounted for. In the
former case, an additional shipping slip was printed so that the
remaining parts would be delivered to inventory.

This “on-line” technique eliminated unnecessary shipment
of parts to inventory, minimized parts handling, facilitated
shipments and minimized errors.

Even though the chains were sorted, most back-order chains
were either empty or had only a few entries so that adding new
entries was never really slow.
• The Three Bears of IMAGE 7

Another, even more outstanding, use is available to order-
processing systems where each sub-system (or part) in a master
dataset is related to its components in a detail dataset by the
part-number of the subsystem (or part). The component-
numbers in each detail record are also present as part-numbers
in the master dataset and each of these in turn may be related to
other components in the detail dataset. In other words, the
“parent-child” relation implicit in the concept of “component”
is recursive.

The detail dataset here is related to the master via a parent-
number field and is sorted by component-number. The fields of
the record are ordered to take advantage of IMAGE's extended
sort to include component option and quantity.

This “clever” design together with a recursive procedure
enables the application to provide on-line single- or multi-level,
fully indented, bill-of-material explosions with the components
at each level in component-number and component-option
order. No sorting is required and the performance of the
explosion is limited by terminal speed.

Although many people may recommend that you avoid
sorted paths, try implementing either of these applications
without them. Response time would be somewhere between
bad and disastrous!

There really is a place for network databases and sorted
paths.

Baby Bear: a
discussion of PATHS

One of the reasons for defining a path is to provide rapid access
to all of the records in a detail dataset having a common search
field value.

In general, a path should be defined only if (a) it is necessary
for the application or (b) its speed of access is better than a
serial search and it is frequently used or (c) its speed of access is
so much better than a serial search that it is cost effective even if
it is seldom used.

Remember that each path you define causes additional
overhead for DBPUT and DBDELETE and requires more disc
space.

In considering frequency of use, remember that if you have
16 paths they cannot all be being used more than 6.25% of the
time so that any arguments offered by the proponents of a path
or paths should be evaluated in light of the fact that the sum
frequency of use cannot exceed 100%.

As illustrated in the examples, sorted paths can provide
benefits critical to some applications.
8 The Three Bears of IMAGE •

For instance, the application may not have to search the
entire chain or it may simply be easier to program and/or
marvelously faster as with the bill-of-material example
mentioned above.

The overhead for paths mentioned in reference to DBPUTs
and DBDELETEs is also proportional to their frequency of use.
In other words, this overhead is less of a consideration for
relatively static datasets than for relatively dynamic datasets. So
additional paths for static datasets have less DBPUT and
DBDELETE performance costs than on dynamic datasets.

SummaryGood uses of integer keys require the designer's awareness of
the effect of the key values and the capacity on the address
assignments made by DBPUT over the life of the application.

For certain applications, the use of sorted paths is not only
highly recommended but may, in fact, be critical to success. The
back-order application described earlier was implemented by
Jonathan Bale in 1974 and the bill-of-material application was
implemented by myself also in 1974. In both cases, sorted paths
were a must.

In general, the rule for a path is: “When in doubt, leave it
out.” If leaving it out proves to be a mistake, you can be sure
that someone will call it to your attention and then (with the
help of Adager) you may add it without impact on any
application module. On the other hand, if providing it proves
to be of little benefit, no one will tell you and removing it will
undoubtedly have dire consequences on some application
module(s).
• The Three Bears of IMAGE 9

	Introduction
	Background
	Papa Bear: the INTEGER KEY pitfalls
	Mama Bear: the SORTED PATH pitfall
	Baby Bear: a discussion of PATHS
	Summary

