

Do migrating secondaries give you
migraines?

F. Alfredo Rego
Adager Corporation
Sun Valley, Idaho 83353-3000 • USA

http://www.adager.com

What are migrating
secondaries?

Migrating secondaries are associated with the approach (called
“hashing”) that IMAGE uses to store (and retrieve) entries in
master datasets.

What is hashing?Hashing allows you to quickly access a specific master entry
(potentially among billions of entries) according to the value of
the entry’s search field (or master “key”), regardless of the
entry’s location in the master dataset.

IMAGE’s master datasets are optimized for hashed access.
For online applications, which usually serve people who are
impatiently waiting over the counter or over the telephone, this
kind of quick access provides excellent performance, most of
the time. For some caveats, please see Fred White’s papers at
http://www.adager.com/TechnicalPapers.html

Like everything else in the universe, the advantages of hash-
ing come tightly coupled with disadvantages. For instance, we
have the very real possibility of synonyms (entries with differ-
ent search-field values which, nevertheless, hash to the same
location). Even though mathematicians have written countless
dissertations on the desirability of “perfect” hashing algorithms
that would not produce any synonyms at all, every hashing
algorithm known today produces synonyms.

Are there other
methods for fast

storage and retrieval?

If you look on the Web for “indexing”, you will be over-
whelmed by the breadth and depth of the subject.
• Do migrating secondaries give you migraines? 1

http://www.adager.com
http://www.adager.com/TechnicalPapers.html

IMAGE uses a few specific approaches, listed here in order of
sophistication:

• Serial access (DBGET modes 2 and 3). Compact datasets,
without “holes” in the middle, perform best under serial
access.

• Direct access (DBGET mode 4). This is the quickest way to
get to any entry on any dataset (master or detail), provided
that you know the exact address. This is the “fundamental”
or “atomic” access method used — deep down inside — by
all other methods.

• Chained access via doubly linked lists (DBGET modes 5
and 6). A chain consist of entries whose search-field values
are equal (for details) or have the same hash value (for
masters). Detail chains can be kept sorted via a sort field.
You improve chained-access performance by repacking a
dataset so that each chain has its entries in contiguous
locations.

• Hashing (DBGET modes 7 and 8). Applicable only to mas-
ters.

• B-Tree indexing. Applicable only to masters.
• Third-Party Indexing (TPI). Applicable to masters and

details. In addition to tree-based indexing, TPI supports
keyword retrieval on any field (“native” IMAGE access
methods apply only to search fields).

“Hashing” and “indexing” are just two examples (among many)
of techniques used by designers of database management sys-
tems to try to retrieve (and to store), as quickly as possible, the
entries (or rows, or records) of interest for a given query.

Is hashing better than
indexing (or vice

versa)?

There Is No Such Thing As A Free Lunch (TINSTAAFL) or, if you
prefer, There Ain’t No Such Thing As A Free Lunch (TAN-
STAAFL).

Hashing comes with migrating secondaries and the need to
rehash the entire master dataset when changing its capacity.
Fortunately, the issue of migrating secondaries turns out to be a
non-issue most of the time. For instance, secondaries don’t get
migrated to the moon — they usually get relocated within the
same memory cache and the cost of doing so is negligible.

Fortunately, also, most synonym chains are short (in the sin-
gle digits). So, even with synonym-chain chasing, you will
probably stay within your memory cache if your “data locality”
is good.
2 Do migrating secondaries give you migraines? •

The tree-like structures associated with indexing come with
node splitting, balancing, and reorganization. “Bushy” trees
perform better than “stringy” trees. Trees with fewer levels per-
form better than “tall” trees. With tree-based indexing, you also
duplicate the search-field data (you keep one copy in the
dataset and one copy in the index). It’s a jungle out there!

The minimum number of disc accesses for tree-based index-
ing is two (one for the tree index, one for the dataset). The
minimum number of disc accesses for hashing is one (and,
most of the time, this is all it takes).

A tree has several levels (more or less, depending on statisti-
cal considerations) that must be traversed via pointers.

So, is there a perfect way to store and retrieve database
entries? Unfortunately, the answer is no.

What is a synonym
chain?

A synonym chain is IMAGE’s method of managing synonyms
(members of the class of entries whose search-field values hash
to the same location).

An entry which hashes to an empty location (or to a loca-
tion temporarily occupied by a secondary) becomes a primary.
A primary “owns” its location and can’t be evicted (i.e., it never
migrates to a different location).

An entry which hashes to a location that is already occupied
by a primary becomes, ipso facto, a secondary. A secondary has
to find a temporary location elsewhere and is always subject to
“eviction” (if a new entry hashes to the secondary’s temporary
location) or “promotion” (if the primary that currently occu-
pies the secondary’s proper location gets deleted and this
secondary becomes a primary by taking its place).

The primary has an important job: it serves as the synonym
chain’s head, which contains information regarding the total
number of synonyms in the chain (if any) and keeps track of
the first and last members in the chain. A secondary only has to
worry about its predecessor (if any) and its successor (if any).

Why do some
secondaries migrate?

Some secondaries migrate because primaries (new or old) have
top priority.

Fortunately, not all secondaries migrate. The rules for
migrating secondaries are quite clear:

• Whenever a new legitimate primary hashes to some loca-
tion which was previously “borrowed” by a secondary,
IMAGE migrates the secondary elsewhere, to make room
for the new primary.
• Do migrating secondaries give you migraines? 3

• Whenever IMAGE deletes a primary with secondaries, it
migrates the first secondary and promotes it to the pri-
mary location, to take over the ChainHead functions.

Are all secondaries
“bad”?

No. There are “good” secondaries and “bad” secondaries,
according to their demands for a very valuable computer
resource with direct impact on performance: disc access.

Good secondaries are those which we may access directly in
memory buffers, without having to go to disc. Bad secondaries
are those which force excessive disc activity.

IMAGE takes excellent advantage of the optimized disc-
access methods provided by MPE/iX. It is a good idea to invest
in as much main memory as possible, to minimize time-con-
suming trips to/from disc.

Messy synonym chains, with entries scattered all over, will
probably contribute numerous bad synonyms. Cleanly-packed
synonym chains, on the other hand, may contribute good syn-
onyms which will be, for all practical purposes, equivalent to
primary entries. Intra-memory operations are, after all, signifi-
cantly faster than disc operations.

Under any circumstances, short and tidy synonym chains are
much better than long and messy synonym chains. Use
Robelle’s HowMessy (available in the Robelle and Adager instal-
lation packages) to get a good view: http://www.robelle.com/
smugbook/howmessy.html

Why do secondaries
(migrating or not)

give you headaches?

There are three fundamental operations on entries:
• addition
• deletion
• finding

We want to do these operations as quickly as possible. There-
fore, we want to avoid excessive disc accesses. Unfortunately,
secondaries (migrating or not) tend to increase disc activity. As
a consequence, the response time for online applications may
deteriorate and the throughput of batch jobs may decline.

Quick review: Adding
and deleting entries.

If a new entry’s appointed location is vacant, we are home free.
We just add the new entry on the spot and mark it as “occu-
pied”. The new primary entry will have tenure for life.

If a new entry’s appointed location is already occupied, we
must do a lot of work. There are two possibilities:

• The current occupant is at its appointed place and, since it
arrived before the new entry, it has “seniority” and tenure
4 Do migrating secondaries give you migraines? •

http://www.robelle.com/smugbook/howmessy.html
http://www.robelle.com/smugbook/howmessy.html

for life. The new entry, sadly, becomes a synonym and we
must place it elsewhere as a secondary, linked to the pri-
mary by means of a synonym chain. Before we add the
entry, though, we must make sure that it will not duplicate
an existing entry’s search-field value. We must, therefore,
scan the whole synonym chain before we can add the new
entry. If the synonym chain is long, this may take a while.

• The current occupant did not hash to this location but was
placed here as a secondary (subject to migration). Sorry: its
time to migrate has come and must go elsewhere. After we
evict the secondary, we can place the new entry in its
appointed spot, as a primary.

Notice that the innocent-sounding expression “must go else-
where” is easier said than done. Finding the “elsewhere” may
take a long time if the dataset has a long, uninterrupted cluster
of occupied entries. This usually happens if the dataset is quite
full or if the distribution of search-field values pushes the lim-
its of IMAGE’s hashing algorithm.

Having found the “elsewhere” does not guarantee tenure
there, since any secondary is subject to migration in the future.
If we add a new entry which hashes to a spot occupied by a sec-
ondary, we must migrate the secondary elsewhere. If we delete a
primary with secondaries, we must move the first secondary
into the spot previously occupied by the deleted primary (since
we must have a primary). IMAGE, under extreme circum-
stances, may spend a significant amount of time chasing its own
tail while migrating secondaries all over the place.

Quick review:
Finding existing

entries.

Even in a static dataset (where we never add or delete entries),
we may have performance problems when we simply want to
find an existing entry.

If the entry happens to be at its appointed location, we are in
good shape. If the entry is not at its appointed location, there
are two possibilities:

• The appointed spot is empty, in which case we know,
immediately, that our entry does not exist (this is a valid
“entry not found” result in a “find” task).

• The appointed location contains some other synonym
entry (which happens to hash to the same spot as the entry
which interests us). Since this entry is the primary in a syn-
onym chain, it keeps track of the number of synonyms. If
there are no synonyms, we know that our entry does not
• Do migrating secondaries give you migraines? 5

exist. If there are synonyms, we must scan the synonym
chain until we either find our entry or exhaust the chain. In
either case, we may have to go to disc more than once
(depending on the length of the chain, the messiness of the
chain, the dataset’s blocking factor, and so on).

What can you do
about nasty

secondaries?

If you are a theoretical type, you can spend endless pleasant
hours dedicated to the fine art of figuring out the ideal mix of
capacity, percent-full, search-field value distribution, and so on.
This is a worthy endeavor, of course. But the sad thing is that
your dataset, most likely, is dynamic. The minute you add or
delete a few thousand entries, most of your glorious conclu-
sions become invalid.

If you are a practical type, you might just as well accept real-
ity, bite the bullet, and periodically repack your master datasets
to balance the synonym load (just as you periodically repack
your detail datasets, your disc drives, or the drawers in your
desk). If your dataset is static, you are in luck: you just repack
once.

As another alternative, you can enable your dataset for mas-
ter dynamic capacity expansion (MDX). See Fred White’s paper
at http://www.adager.com/TechnicalPapersHTML/DDX-FW.html

If the widths of master ventilation shafts (free areas reserved
for future secondaries) are narrow and suffocating, you may
consider changes in the dataset capacity which, together with
dataset repacking and MDX, may improve the situation.

An ideally-packed master dataset allows sufficient ventila-
tion space for DBPUT’s sake (so that it does not take forever to
find an empty spot for a new secondary or for a migrating old
secondary) without having so much empty space that a serial
scan (or a backup) will take forever.

Furthermore, the ventilation space has to be intelligently dis-
tributed throughout the entire dataset.

The good news and
the not-so-bad news.

Fortunately, it turns out that repacking a master dataset is a
very efficient operation. Smart repacking of a master dataset
takes only slightly longer than an optimized serial dataset scan.

Unfortunately, repacking does not seem to be an a priori
activity. We can only repack master datasets a posteriori. We
must repack periodically, and (unless we quit adding or delet-
ing entries) we must keep repacking ad infinitum.

The same applies, of course, to tree-based indexing meth-
ods. The price of good performance is constant fine-tuning.
6 Do migrating secondaries give you migraines? •

http://www.adager.com/TechnicalPapersHTML/DDX-FW.html

	What are migrating secondaries?
	What is hashing?
	Are there other methods for fast storage and retrieval?
	Is hashing better than indexing (or vice versa)?
	What is a synonym chain?
	Why do some secondaries migrate?
	Are all secondaries “bad”?
	Why do secondaries (migrating or not) give you headaches?
	Quick review: Adding and deleting entries.
	Quick review: Finding existing entries.
	What can you do about nasty secondaries?
	The good news and the not-so-bad news.

